Capitolato Tecnico della gara a procedura aperta per la fornitura di un sistema di server di calcolo per il centro Tier-1 dell'INFN
Indice

1. PREMESSA ... 3
2. DESCRIZIONE, COSTI E PRE-REQUISITI TECNICI ... 3
3. CARATTERISTICHE DELLE UNITÀ DI SISTEMA .. 4
4. CARATTERISTICHE DEGLI ENCLOSURE ... 8
5. CARATTERISTICHE SOFTWARE E DOCUMENTAZIONE ... 9
6. MISURE DI PRESTAZIONE ... 10
7. SWITCH DI AGGREGAZIONE .. 11
8. COLLAUDO ... 14
9. CONSEGNA E INSTALLAZIONE ... 14
10. GARANZIA E MANUTENZIONE .. 15
11. CONTATTI ... 17
1. Premessa

L’INFN-CNAF invita ditte (nel seguito indicate con il termine “operatore economico”) a presentare offerte per la fornitura, installazione e manutenzione di un sistema di calcolo scientifico attraverso una gara a procedura aperta che sarà aggiudicata secondo il criterio del prezzo più basso.

Il presente Capitolato Tecnico disciplina gli aspetti tecnici della gara.

2. Descrizione, costi e pre-requisiti tecnici

2.1. Indicazioni e definizioni generali

2.1.1. La fornitura deve essere consegnata e installata presso il centro di calcolo Tier1 dell’INFN al CNAF di Bologna.

2.1.2. Nella sede della fornitura non esistono rischi da interferenze per le attività di installazione. Per la modalità di consegna si veda il capitolo 9 del presente Capitolato Tecnico.

2.1.3. La fornitura deve essere comprensiva di servizio di manutenzione (assistenza tecnica) on-site per 4 anni.

2.1.4. La fornitura deve rispettare tutte le richieste formulate nel presente Capitolato Tecnico.

2.1.5. Rack, presiere (Power Distribution Unit o PDU), tastiere, monitor, mouse e sistemi di raffreddamento non presenti su enclosure o unità di sistema non fanno parte della fornitura.

In questo Capitolato Tecnico il termine “unità di sistema” si riferisce ad una unità di calcolo basata su una singola scheda madre; il termine “enclosure” si riferisce a un elemento rack-mountable in grado di contenere una o più unità di sistema. Per esempio, un server “tradicionale” 1U è composto da una unità di sistema e da un enclosure; un server “twin” 1U è composto da due unità di sistema e da un enclosure; un blade server è composto da un enclosure e da diverse unità di sistema, a seconda della densità.

\[1U = 1 \text{ unità di altezza} = 4.45 \text{ cm}\]
2.2. Descrizione della fornitura

2.2.1. La fornitura dovrà garantire una potenza di calcolo minima pari a 30.000 HEP-SPEC06, da calcolarsi come indicato al capitolo 6.

2.2.2. Costo massimo dell'hardware, incluso il servizio di installazione e manutenzione: € 284.426 (esclusa IVA nella misura di legge).

2.3. Requisiti tecnici

2.3.1. L'operatore economico deve possedere la certificazione ISO 9001:2008, pena l'esclusione.

2.3.2. Tutti gli apparecchi elettrici devono essere forniti di certificazione CE. L'operatore economico deve fornire prova scritta di rispondenza CE delle apparecchiature proposte in fase di gara.

3. Caratteristiche delle unità di sistema

3.1. Scheda madre

3.1.1. Sulla scheda madre deve essere presente un management controller (BMC) compatibile IPMI versione 2.0 o superiore. Il BMC deve consentire almeno il monitoraggio delle ventole (se presenti), della temperatura di CPU e scheda madre, la gestione remota dell'alimentazione elettrica (possibilità di power-cycle) e l'accesso criptato alla console seriale attraverso la rete (per esempio via RCMP+ oppure SSH).

3.1.2. La funzionalità IPMI dell'unità di sistema deve essere accessibile attraverso una applicazione a linea di comando in esecuzione su una macchina Linux remota. Il BMC deve consentire la configurazione dell'utente BMC e dei parametri di rete attraverso un'applicazione a linea di comando in esecuzione locale che funzioni sotto Linux.

3.1.3. La funzionalità IPMI dell'unità di sistema deve essere accessibile attraverso un browser web in esecuzione su una macchina Linux remota. In particolare tramite questo meccanismo deve essere possibile inviare comandi di accensione e spegnimento e accedere alla console di sistema.

3.1.4. Il BMC deve mantenere i settaggi, incluse le configurazioni di accesso e di rete, anche qualora l'alimentazione all'unità di sistema venga interrotta; il BMC deve inoltre essere accessibile senza riconfigurazioni una volta che l'alimentazione venga ripristinata.
3.1.5. La scheda madre deve supportare bootstrap via rete con protocollo PXE 2.0 o superiore. Il BIOS deve consentire la possibilità di eseguire boot via PXE prima del boot locale.

3.1.6. La scheda madre deve supportare la possibilità di invocare un menu di selezione del device di boot e di selezionare il device di boot all’accensione.

3.1.7. Il BMC deve supportare la possibilità di cambiare l’ordine dei dispositivi di boot al successivo riavvio, tramite un’applicazione a linea di comando sotto Linux o remotamente tramite la sua interfaccia LAN.

3.1.8. La scheda madre deve supportare la re-direzione della console ad una porta seriale accessibile attraverso IPMI Serial-Over-LAN. Tutti i cambiamenti di settaggi BIOS, l’invocazione del menu di selezione del device di boot e la selezione del device di boot devono essere possibili attraverso questa porta via rete.

3.1.9. Non è richiesta la ridondanza di BMC o equivalenti.

3.1.10. È richiesta la possibilità di connessione a un sistema KVM (Keyboard, Video, Mouse) attraverso connettori standard.

3.1.11. La scheda madre deve fornire almeno 2 porte SAS 1.0 o SAS 2.0, in alternativa 2 porte SATA 2.0 (AHCI) o SATA 3.0 (AHCI).

3.2. Processori

3.2.1. Ciascuna unità di sistema deve essere dotata di massimo due processori multi-core di architettura x86_64 forniti di estensioni EM64T oppure AMD64.

3.2.2. Ogni processore deve essere multi-core. Unità di calcolo "virtuali" quali quelle fornite da tecnologie come hyper-threading o simultaneous multi-threading non vengono considerati core fisici, ma soltanto unità di calcolo. A titolo di esempio, un Intel E5-2660 ha otto core fisici e sedici unità di calcolo mentre un AMD Opteron 6274 ha sedici core fisici e sedici unità di calcolo.

3.2.3. In caso venga proposta una soluzione con processori Intel, la funzione hyper-threading deve essere attiva e devono quindi considerarsi unità di calcolo tutti i processori virtuali forniti da tale tecnologia.

3.2.4. Ogni processore deve fornire un minimo di 8 core fisici ed un massimo di 16 unità di calcolo.

3.2.5. Ogni processore deve avere un TDP (Wattaggio) massimo di 115W.

3.2.6. Ogni processore deve avere almeno 15MB di cache L3.
3.3. **Memoria**

3.3.1. Ciascuna unità di sistema deve essere equipaggiata con almeno 4GB di RAM per unità di calcolo (cfr. 3.2.2).

3.3.2. Ciascuna unità di sistema dovrà essere dotata di memorie del tipo DDR-3 registered ECC ed operanti, nel sistema fornito, ad una frequenza di almeno 1600 MHz con una latenza CAS di al massimo 11\(^2\).

3.3.3. I moduli di memoria devono essere approvati dal costruttore della scheda madre specificamente per l'utilizzo sulla scheda madre fornita.

3.3.4. I moduli di memoria devono riportare il loro numero di serie nei campi DMI.

3.3.5. Se il sistema supporta l'accesso alla memoria non uniforme (NUMA) allora la topologia NUMA deve essere completamente bilanciata.

3.3.6. Non è permesso combinare moduli di memoria con differente dimensione, tipo, velocità o fabbricante.

3.4. **Storage locale**

3.4.1. Tutti i dispositivi storage devono essere hard disk.

3.4.2. Per ogni unità di sistema, devono venire forniti almeno due hard disk collegati direttamente alla scheda madre.

3.4.3. Per ogni unità di sistema, la capacità di archiviazione minima deve essere di 2TB.

3.4.4. Non sono consentiti dischi di dimensione maggiore di 2TB.

3.4.5. Tutti i dispositivi di storage devono essere forniti di un'interfaccia SAS 1.0 o SAS 2.0 oppure SATA 2.0 o SATA 3.0.

3.4.6. Tutti i dischi devono essere certificati dal costruttore per operare continuativamente 24 ore al giorno, 7 giorni alla settimana.

3.4.7. Tutti i dischi devono supportare Native Command Queueing (NCQ) o Tagged Command Queueing (TCQ).

3.4.8. Tutti i dischi devono supportare i self test SMART short ed extended.

\(^2\) Si noti che la combinazione scelta di processore, scheda madre e memoria deve operare a questa frequenza e latenza CAS. Non è sufficiente che il modulo di memoria supporti questa modalità operativa.
3.4.9. Il controller dei dischi deve verificare lo stato di salute attraverso controlli e contatori SMART.

3.4.10. La combinazione di dischi e di controller deve essere tale da permettere l’aggiornamento del firmware “in-place” utilizzando un eseguibile Linux oppure un’immagine che sia “PXE-bootable”.

3.5. Connettività

3.5.1. Ogni unità di sistema deve essere fornita di due interfacce dedicate Gigabit Ethernet o superiore, dotata di connettore RJ45 per cavi in rame o nel caso di soluzioni integrate, direttamente connessa al backplane.

3.5.2. L’interfaccia di rete deve essere compatibile con PXE 2.0 o superiore.

3.5.3. L’accesso alla console remota IPMI non deve richiedere l’utilizzo di un’interfaccia di rete separata.

3.6. Altre richieste

3.6.1. Ciascuna unità di sistema deve essere fornita con un interruttore on/off di alimentazione.

3.6.2. Tutte le unità di sistema oggetto della presente gara devono essere fornite con identiche caratteristiche hardware, versioni di firmware e di BIOS.

3.6.3. I cavi interni non devono essere punzonati, danneggiati, o in tensione meccanica.

3.6.4. Le funzionalità della unità di sistema definiti via settaggi NVRAM (per esempio ordine di boot, configurazione RAID, etc.) devono essere mantenute anche in caso di accidentale perdita di alimentazione elettrica.

3.6.5. Deve essere possibile disabilitare o inibire eventuali allarmi sonori.

3.6.6. Tutti i componenti dell’unità di sistema devono rispettare le specifiche approvate dai rispettivi costruttori (per esempio, non è consentito overclocking delle CPU).

3.6.7. Il numero di serie di ogni unità di sistema deve essere registrato nel “Field Replaceable Unit (FRU)” del suo BMC. In particolare deve essere registrato nel campo “Product Serial”. Non è sufficiente registrare il numero di serie nel campo DMI del BIOS.
4. Caratteristiche degli enclosure

4.1. Caratteristiche fisiche

4.1.2. Gli enclosure devono essere approvati dal costruttore per l’uso con il tipo, dimensione e numero di unità di sistema proposte.

4.1.3. Unità di sistema ed enclosure devono essere progettati in modo tale che in caso di necessità di rimozione o intervento su un’unità di sistema non venga coinvolta nessun’altra unità di sistema.

4.1.4. Ogni enclosure deve avere una densità di minimo 1,3 schede madri per unità di rack (U).

4.1.5. Le guide e tutti gli accessori necessari per il montaggio e l’installazione a rack fanno parte della fornitura.

4.2. Alimentazione elettrica e raffreddamento

4.2.1. E’ richiesta ridondanza di alimentazione elettrica sugli enclosure. La ridondanza deve essere tale che il fallimento di un numero minore od uguale alla metà degli alimentatori presenti su un enclosure non pregiudichi il funzionamento di nessuna delle unità di sistema installate sullo stesso enclosure, anche quando queste sono utilizzate a consumo elettrico massimo.

4.2.2. Gli alimentatori devono essere certificati 80 Plus Platinum o superiore.

4.2.3. Gli alimentatori devono supportare i requisiti specificati dal costruttore della scheda madre e quelli specificati per tutti i componenti interni all’enclosure.

4.2.4. Gli alimentatori devono essere in grado di supportare l’installazione di tutti i dischi supportati dall’enclosure.

4.2.5. Gli alimentatori devono essere dotati di compensazione di fattore di potenza (cos(ϕ)) secondo lo standard IEC 61000. Per un sistema a pieno carico, è richiesto un fattore di potenza di 0,9 o superiore.

4.2.6. Devono essere forniti cavi di alimentazione con presa elettrica IEC-20 e cavi di rete standard UTP categoria 6, entrambi di lunghezza da determinarsi prima del montaggio delle macchine nei rack (ove non sia prevista una soluzione integrata). Il numero e la lunghezza di tali cavi, dipende dal tipo di soluzione tecnica presentata e
non può pertanto essere specificato rigidamente prima dell’aggiudicazione della gara.

4.2.7. Il sistema di raffreddamento deve essere dimensionato in modo che l'enclosure e tutti i componenti in esso installati vengano mantenuti ad una temperatura compatibile con quanto specificato per il funzionamento del sistema, assumendo una installazione in un rack pienamente popolato e con una temperatura dell'aria in ingresso compresa tra 15 e 35 gradi centigradi. L'aria calda può essere espulsa solamente attraverso la parte posteriore dell'enclosure.

4.2.8. Le ventole, fatta eccezione per quelle delle CPU e degli alimentatori, devono essere ridondanti.

5. Caratteristiche software e documentazione

5.1. Sistema operativo

5.1.1. Tutti i sistemi devono fornire la piena funzionalità richiesta da questo Capitolo Tecnico con RedHat Enterprise Linux 6 Server x86_64, versione 6.5 o successiva. I sistemi non devono contenere componenti o dispositivi che richiedano driver non inclusi in tale sistema operativo. Non sono richieste licenze per il sistema operativo.

5.1.2. Tutti i sistemi devono essere in grado di fare il boot di RedHat Enterprise Linux 6 Server x86_64, versione 6.5 o successiva, senza connessione a tastiera, video, mouse o console seriale.

5.2. Settaggi

5.2.1. Tutti i sistemi devono essere consegnati con settaggi identici, che saranno specificati dall'INFIN-CNAF. In particolare, le configurazioni di disco, i livelli di revisione del firmware (BIOS, BMC), i settaggi memorizzati in NVRAM e i jumper settings devono essere i medesimi. L’operatore economico dovrà prendere contatto con l’INFIN-CNAF per la definizione dei settaggi prima della consegna.

5.3. Strumenti flash linux e immagini BIOS/firmware

5.3.1. Devono essere forniti strumenti dedicati a linea di comando in grado di effettuare l’aggiornamento di BIOS e di BMC. Questi strumenti devono poter essere eseguiti all’interno del sistema operativo Linux.

5.3.2. Deve essere fornito uno strumento dedicato a linea di comando in grado di effettuare la scrittura del numero di serie all’interno del campo FRU del BMC.
5.4. Documentazione

5.4.1. Le unità di sistema e gli enclosures della fornitura devono essere consegnati con un set completo di manuali in italiano o in inglese, sotto forma di CD e in formato PDF oppure HTML. L’operatore economico deve accordare all’INFN il diritto di redistribuire tali manuali al proprio personale operativo.

5.4.2. Prima delle operazioni d’installazione, l’operatore economico dovrà consegnare un file elettronico in formato csv (comma separated variables) contenente il numero seriale e gli indirizzi MAC di ogni unità di sistema e di ciascun enclosure (qualora applicabile).

6. Misure di Prestazione

6.1. Prestazione di sistema

6.1.1. Le misure di prestazione di sistema devono essere eseguite dall’operatore economico seguendo le indicazioni qui riportate. L’INFN mantiene il diritto di eseguire propri test di performance sui sistemi oggetto della fornitura seguendo le stesse indicazioni; questi test potranno essere eseguiti nella sede dell’INFN-CNAF a discrezione dell’INFN.

6.1.2. I dettagli tecnici sulle procedure di test saranno resti disponibili all’indirizzo http://tier1.cnaf.infn.it/gare/cpu2014. Tutti i test dovranno essere eseguiti con Scientific Linux 6 (SL6) x86_64, versione 6.5 o successiva. Tutti i requisiti di performance dovranno essere misurati con la distribuzione indicata, installata senza cambiare parametri di kernel, driver, versioni di librerie, etc. In particolare, tutte le compilazioni dovranno essere eseguite con il compilatore di sistema gcc.

6.1.3. Le macchine dovranno essere configurate seguendo le indicazioni che saranno rese disponibili all’indirizzo http://tier1.cnaf.infn.it/gare/cpu2014. L’operatore economico dovrà allegare all’offerta i risultati dei test di performance dei sistemi proposti utilizzando i moduli disponibili all’indirizzo sopra citato.

6.1.4. La performance di sistema deve essere misurata utilizzando la suite di benchmark HEP-SPEC06. HEP-SPEC06 è un benchmark sviluppato e adottato nella comunità di fisica delle alte energie per misurare la performance delle CPU, basato su SPEC CPU2006 V1.1⁴. Per facilitare l’esecuzione del benchmark, l’INFN-CNAF fornirà uno script, che dovrà essere usato dall’operatore economico. Lo script, insieme alle

Cioè la versione a 64 bit. Scientific Linux 6 è una distribuzione ricompilata dai sorgenti di RedHat Enterprise 6 ES.

⁴ Per istruzioni su come ottenere SPEC CPU2006 V1.1 o successive, consultare il sito http://www.spec.org
istruzioni per la sua installazione ed esecuzione, sarà disponibile all’indirizzo Internet sopra menzionato.

6.1.5. L’INFN collaborerà con l’operatore economico in caso di problemi con l’installazione di Scientific Linux 6 e/o con l’installazione, la configurazione o l’esecuzione dei test di performance.

7. Switch di aggregazione

7.1. Caratteristiche

7.1.2. Gli uplink verso lo switch di centro stella devono avvenire tramite collegamento a 10Gbit/s su fibra ottica multimodale SR (i transceiver devono essere parte della fornitura).

7.1.3. Nel caso si proponga una soluzione basata su sistemi non integrati in enclosure con moduli di I/O, si richiede che siano presenti almeno 4 uplink a 10Gbit/s.

7.1.4. Nel caso si proponga una soluzione basata su sistemi non integrati in enclosure con moduli di I/O, gli switch proposti devono essere dotati di alimentazione ridondata; per le caratteristiche dei cavi di alimentazione, si rimanda alla sezione 4.2.6 di questo documento.

7.1.5. Gli switch proposti devono essere tutti uguali: non è possibile quindi fornire switch con caratteristiche diverse (ad esempio numero di porte, o numero di uplink) e devono essere di un’unica marca e modello.

7.1.6. Nel caso si proponga una soluzione basata su sistemi non integrati in enclosure con moduli di I/O (soluzioni che prevedano switch esterni al sistema di calcolo), l’ingombro di ogni singolo switch non deve superare 1U (unità rack) ed il flusso d’aria deve essere di tipo “Rear to Front” dove il “Front” è il lato ospitante le interfacce Ethernet di collegamento delle schede madri che sarà nel corridoio caldo ed il “Rear” sarà il lato da cui lo switch aspirerà l’aria fresca. Nel caso in cui la soluzione di calcolo proposta preveda di avere le interfacce di rete sul frontale delle macchine, il flusso dell’aria deve essere “Front to Back” per un corretto smaltimento del calore.

7.1.7. Nel caso si proponga una soluzione basata su sistemi non integrati in enclosure con moduli di I/O, gli switch proposti devono potere funzionare anche in modalità “Stand Alone”.

7.1.8. Nel caso si proponga una soluzione basata su sistemi non integrati in enclosure con moduli di I/O, ogni singolo switch proposto, dopo il collegamento dei nodi di calcolo deve avere almeno il 20% delle porte libere per il collegamento di ulteriori interfacce.
7.1.9. Gli switch devono essere configurabili via CLI (Command Line Interface); in particolare via CLI deve essere possibile dare comandi di tipo “Range” ossia configurare con un unico comando gruppi multipli di porte anche non contiguous senza dovere ripetere ogni volta gli stessi comandi e senza dovere definire di volta in volta aggregati di porte per la configurazione.

7.1.11. Gli switch devono garantire un throughput non bloccante fra tutte le porte.

7.1.12. Gli switch devono supportare “Link aggregation” utilizzando il protocollo LACP (802.1ad) nello specifico le porte in link aggregation devono essere collegate al NEXUS 7018.

7.1.13. Gli switch devono supportare il Vlan tagging secondo lo standard 802.1Q

7.1.15. Gli switch devono supportare SNMP per il management, il protocollo NTP per la sincronizzazione ed esportare i propri log su di un server remoto Syslog.

7.1.16. Gli switch proposti devono essere coperti da un contratto di manutenzione di 4 anni on-site con tempi di intervento entro il giorno lavorativo successivo alla chiamata (che dovrà essere possibile effettuare 24x7x365 giorni l’anno). Tale contratto deve coprire sia aspetti hardware che software, dando accesso a tutti gli aggiornamenti di sistema operativo per tutta la durata del contratto.

7.2. **Numero di enclosure e di switch previsti nei rack**

7.2.1. Il numero di enclosure inseribili in ogni rack dipende dal tipo di soluzione proposta.

7.2.2. Nel caso si proponga una soluzione basata su sistemi non integrati in enclosure con moduli di I/O, vanno considerati alcuni fattori:

- Devono essere installati due switch per ogni rack occupato (anche se solo parzialmente occupato).
- Nella fase di installazione, dovranno essere lasciate almeno 2 unità rack libere per ogni switch proposto (una sopra ed una sotto ad ogni switch) per garantire gli spazi operativi per aggiornamenti o sostituzioni.
- Devono essere occupate da enclosure al massimo 32U per ogni rack.
- Le unità di sistema devono essere cablate ad uno degli switch del rack in cui sono installate.

7.2.3. Nel caso si proponga una soluzione basata su sistemi non integrati in enclosure con moduli di I/O, non è possibile installare su un singolo rack un numero di unità di sistema maggiore al throughput totale degli uplink che vengono forniti dagli switch di aggregazione installati su ogni rack. Questo viene richiesto affinché siano forniti
un numero di switch consoni a sostenere il traffico in entrata e in uscita dalle unità di sistema.

7.2.4. Nel caso si proponga una soluzione basata su sistemi integrati in enclosures con moduli di I/O, si richiede che sia presente almeno uno switch per ogni enclosure facente parte della fornitura e che venga garantito un throughput di almeno 1Gbit/s per ogni unità di sistema verso lo switch di centro stella, tramite uplink come descritto al punto 7.1.2. Il numero di enclosures per rack dipenderà esclusivamente dal fattore di forma dell'enclosure stesso.
8. Collaudo

8.1. Collaudo

8.1.1. Entro 8 settimane dalla data di fornitura, messa in funzione e validazione di tutte le apparecchiature oggetto di gara, l'INFN-CNAF provvederà alle verifiche tecniche, prove e constatazioni necessarie per accertare la possibilità di emissione del certificato di collaudo positivo. In particolare, parametri che siano misurati con variazioni uguali o superiori al 5% in più o in meno rispetto a quanto dichiarato dal fornitore comporteranno il mancato superamento del collaudo. Nel caso in cui il collaudo abbia esito negativo il periodo di collaudo sarà esteso per un successivo mese. Nel caso in cui dopo tale periodo i problemi non siano risolti, l'INFN-CNAF si riserva il diritto di risolvere il contratto e di rivalersi interamente sulla cauzione.

8.1.2. Il sistema sarà collaudato da personale tecnico dell'INFN opportunamente coniuvato dai tecnici dell'operatore economico aggiudicatario, che dovrà fornire l'assistenza tecnica necessaria. Sarà facoltà del personale INFN incaricato del collaudo ampliare i test richiesti al fine di approfondire maggiormente alcuni aspetti tecnici; il non superamento del collaudo ovvero la mancata verifica effettiva che il sistema risponda in ogni sua parte a quanto richiesto dal presente Capitolato Tecnico costituirà valido motivo per la non accettazione della fornitura.

9. Consegna e installazione

Tutti i sistemi oggetto della presente gara devono essere consegnati, resi operativi e validati a completo carico dell'operatore economico, sotto il coordinamento di personale tecnico dell'INFN e in modo da soddisfare tutte le specifiche del presente Capitolato Tecnico.

9.1. Consegna

9.1.1. La consegna del materiale ordinato dovrà essere eseguita in accordo alle Condizioni Generali di Fornitura delle presente procedura (si veda il capitolo 7 del capitolato d'oneri).

9.1.2. Prima della consegna, l'operatore economico deve prendere contatto con la sede oggetto della fornitura per concordare i dettagli logistici.

9.1.3. L'operatore economico dovrà provvedere allo smaltimento completo del materiale di risulta (per esempio, gli imballaggi).

CAPITOLATO TECNICO DELLA GARA A PROCEDURA APERTA PER LA FORNITURA DI UN SISTEMA DI SERVER DI CALCOLO PER IL CENTRO TIER 1 DELL'INFN

INFN

COESE CONFORME
9.2. Installazione

9.2.1. L'operatore economico deve provvedere all'installazione e validazione dei sistemi a rack e alla cablatura alla alimentazione elettrica ed alla rete.

9.2.2. I sistemi forniti devono essere compatibili con l'installazione nei rack della ditta APC, modello SX AR3100.

9.2.3. Fornitura ed installazione devono essere concordate con un anticipo di almeno 10 giorni in modo da consentire la eliminazione di eventuali rischi di interferenza. A tale scopo occorrerà contattare il referente locale del CNAF, che verrà indicato dopo l'aggiudicazione della gara.

10. Garanzia e manutenzione

10.1. Garanzia

10.1.1. Per i beni oggetto del contratto, in base agli artt. 1490 e 1495 del c.c., l'appaltatore dovrà fornire idonea garanzia, non inferiore a 12 mesi.

10.1.2. Nel periodo di validità della garanzia l'operatore economico si impegna a sostituire ed installare a sua cura e spese quelle parti della fornitura hardware che, per qualsiasi motivo, dovessero risultare in un qualsiasi momento difettose o difformi dalle specifiche, nonché ad effettuare tutte le prestazioni conseguenti per tutto il periodo di copertura contrattuale.

10.2. Manutenzione

10.2.1. L'operatore economico dovrà fornire manutenzione (assistenza tecnica) per tutto l'hardware consegnato per un periodo di quattro anni, calcolato a decorrere dal superamento del collaudo.

10.2.2. Nel caso in cui il concorrente non intenda effettuare il servizio di manutenzione dovrà richiedere, in sede di offerta, l'autorizzazione al subappalto.

In tale caso l'impresa subappaltatrice che effettuerà la manutenzione dovrà essere certificata ISO9001.

10.2.3. La ditta che effettuerà la manutenzione dovrà mettere a disposizione delle sedi INFN destinatarie della fornitura un centro per la ricezione e gestione delle chiamate riguardanti le richieste di manutenzione in garanzia. Tale centro dovrà essere operativo, con operatori addetti, tutti i giorni dell'anno, con esclusione di sabato, domenica e festivi, dalle ore 08:30 alle ore 17:30. Al di fuori di tale fascia...
oraria potrà essere attivata una segreteria telefonica o un fax per la registrazione delle chiamate, le quali dovranno intendersi come ricevute alle ore 8:30 del giorno lavorativo successivo.

10.2.4. In caso di problemi, il supporto tecnico deve intervenire presso il CNAF. Gli interventi sono richiesti con cadenza quindicinale o in caso si sia guastato più del 10% della fornitura effettuata. Nel secondo caso l’intervento deve avvenire entro il giorno successivo a quello della segnalazione del guasto.

10.2.5. Il ripristino della piena efficienza deve avvenire entro cinque giorni lavorativi dalla data di presa in carico del guasto.

10.3. **Manutenzione in loco**

L'operatore economico deve essere pronto a fornire parti di ricambio in loco secondo le seguenti clausole.

10.3.1. Un’analisi dei guasti e la eventuale riparazione potrebbe essere effettuata da personale INFN autorizzato. L’operatore economico deve accettare la possibilità che personale INFN effetti sostituzione di parti delle macchine fornite senza che questo comporti una invalidazione della garanzia.

10.3.2. L’offerta deve prevedere un certo numero di parti di ricambio da lasciare in loco. I costi di spedizione e consegna di tali parti devono essere compresi nel contratto di garanzia. Il numero di parti di ricambio deve essere tale da coprire il numero di guasti previsti in due mesi. L’offerta deve indicare esplicitamente il numero di parti di ricambio che l’operatore intende lasciare in loco (tale numero va indicato nel modulo tecnico di partecipazione). In particolare si richiede almeno (ma non esclusivamente) che vengano fornite come parti di ricambio: hard disk (in numero minimo di 4), banche di memoria (in numero minimo di 8) e alimentatori (in numero minimo di 2) identici a quelli presenti sulle macchine oggetto dell’offerta.

10.3.3. La presenza di una parte di ricambio in loco non vincola il CNAF ad eseguire autonomamente la riparazione. In caso di segnalazione di guasto, secondo le norme previste nella sezione 10.2, l’operatore economico è comunque vincolato ad intervenire.

10.3.4. Con frequenza mensile, o inferiore nel caso le scorte di parti di ricambio scendano al di sotto del 20% di quanto fornito, verrà fornita una lista di tutte le parti che sono state sostituite che successivamente verranno rispedite all’operatore economico (ad un indirizzo indicato dallo stesso) senza alcuna spesa da parte del CNAF. Entro una settimana dalla ricezione di tale lista, l’operatore economico dovrà provvedere all’invio di nuove parti in numero e tipo uguali a quelle restituite, sempre senza alcun onere da parte del CNAF.
11. Contatti

Il R.U.P. (Responsabile Unico del Procedimento) è:

Nome: Dr. Andrea Chierici
Indirizzo: Viale Berti Pichat 6/2
 I-40127 Bologna
 Italia
Telefono: +39 051 6092809
Fax: +39 051 6092746
E-mail: andrea.chierici@cnaf.infn.it

[Signature]