Preventivo per l'anno 2001

Struttura	
BARI	

Ricercatore responsabile locale: Stagno Vincenzo

Codice	Esperimento	Gruppo
1277	BRIC	5

Rappresentante Nazionale:

Vincenzo Stagno

Struttura di appartenenza: BARI

Posizione nell'I.N.F.N.: Incar. di Ric.

	INFORMAZIONI GENERALI
Linea di ricerca	Tecnologie degli acceleratori
Laboratorio ove si raccolgono i dati	Bari, Legnaro
Sigla dello esperimento assegnata dal Laboratorio	
Acceleratore usato	CN a Legnaro
Fascio (sigla e caratteristiche)	d 7 Mev 3 microA
Processo fisico studiato	Generatore di alto stato di carica ("charge breeder") per ioni radioattivi, con quadrupolo RF
Apparato strumentale utilizzato	
Sezioni partecipanti all'esperimento	BARI
Istituzioni esterne all'Ente partecipanti	
Durata esperimento	2 anni

Preventivo per l'anno 2001

Codice	Esperimento	Gruppo
1277	BRIC	5

Struttura

BARI

PREVENTIVO LOCALE DI SPESA PER L'ANNO 2001

In ML

VO	CI		IMF	PORTI	A cura della	
D SPE	i Sa	DESCRIZIONE DELLA SPESA	Parziali	Totale Compet.	Comm.ne Scientifica Nazionale	
missioni	Interno	LNL e contatti ditte. Trasferimento apprecchiature ai LNL (2 settimane x 5 ric x 1.5 Ml) Partecipazione congressi Nazionali	3 15 3	21		
Viaggi e	Estero	Contratti gruppo europeo sorgenti EBIS EURISOL (Ganil) Re> CERN - Congr. intern. (PAC) Contatti con BINP di Novosibirsk	k-Isolde al	12 5	17	
Materiale	Consumo	Componenti meccanici, elettrici e materiale da vuoto Passanti isolanti - Piattaforma di isolamento - Gas		20	20	
Trasp.e	tacch.	trasporto apparecchiature ai LNL		3	3	
Spese	Calcolo	Consorzio Ore CPU Spazio Disco Cassette A				
Affitti e manutenz.	apparecchiat.					
Materiale	Inventariabile	Valvola tutto metallo CF35 Pompa di prevuoto turbo "oil free" (RIAL) Trasformatore isolato a 20 KV 220/220 V 500 W	21			
Costruzione	Apparati	Solenoidi (2x50 cm) per contenimento del fascio Sistema TOF per diagnostica (vedi allegato Mod. EC 2)	205			
Note:		·	Totale	-	287	

Preventivo per l'anno 2001

Codice	Esperimento	Gruppo
1277	BRIC	5

Struttura

BARI

ALLEGATO MODELLO EC 2

COSTRUZIONE APPARATI:

Il costo dello spettrometro a tempo di volo, di ML 155, concordato con un fornitore comprende:

progettazione del sistema (con la partecipazione del gruppo proponente) e sua realizzazione: 100 MI;
rivelatore a multichannel plate: 10 MI;

- elettronica di acquisizione utilizzante un Turbo Multichannel Scaler della EG & G - Mod. T914: 25 MI; - alimentazioni: 20 MI.

Preventivo per l'anno 2001

Codice	Esperimento	Gruppo
1277	BRIC	5

Struttura	
BARI	

PREVISIONE DI SPESA: PIANO FINANZIARIO LOCALE

PER GLI ANNI DELLA DURATA DEL PROGETTO

In ML

ANNI FINANZIARI	Miss. interno	Miss. estero	Mater. di cons.	Trasp.e Facch.	Spese Calcolo	Affitti e manut. appar.	Mat. inventar.	Costruz. apparati	TOTALE Competenza
2001	21	17	20	3			21	205	287
ΤΟΤΑLΙ	21	17	20	3			21	205	287

Note:

Osservazioni del Direttore della Struttura in merito alla disponibilità di personale e di attrezzature:

Nessuna annotazione

Preventivo per l'anno 2001

Codice	Esperimento	Gruppo
1277	BRIC	5

Struttura

BARI

PREVENTIVO GLOBALE PER L'ANNO 2001

In ML

Struttura	A CARICO DELL' I.N.F.N.							A carico		
otrattara	Miss. interno	Miss. estero	Mater. di cons.	Trasp. e Facch.	Spese Calc.	Affitti e Manut. Appar.	Mater. inventar.	Costruz. appar.	TOTALE Compet.	altri Enti
BARI	21	17	20	3			21	205	287	0
TOTALI	21	17	20	3			21	205	287	0

NB. La colonna A carico di altri Enti deve essere compilata obbligatoriamente Note:

Preventivo per l'anno 2001

Codice	Esperimento	Gruppo
1277	BRIC	5

Struttura

BARI

	A) ATT	IVITA' SV	OLTA NE	ll'ann	0 2	000			
Vedere Allegate	o 1								
	B) AT	nvita' p	Revista I	PER L'A	ANNO	2001			
Vedere report a	allegato 2								
C) FIN					GLI AN	INI PREC			In ML
Anno Finanziario	Missioni interno	Missioni estero	Materiale di consumo	Trasp. e Facch.	Spese Calcolo	Affitti e Manut. Apparec.	Materiale inventar.	Costruz. apparati	TOTALE
2000	4	4	10					100	118
TOTALE	4	4	10					100	118

Preventivo per l'anno 2001

Codice	Esperimento	Gruppo
1277	BRIC	5

In ML

Struttura	
BARI	

PREVISIONE DI SPESA

Piano finanziario globale di spesa

ANNI FINANZIARI	Miss. interno	Miss. estero	Materiale di cons.	Trasp.e Facch.	Spese Calcolo	Affitti e manut. appar.	Mat. inventar.	Costruz. apparati	TOTALE Competenza
2001	21	17	20	3			21	205	287
TOTALI	21	17	20	3			21	205	287

Note:

Preventivo per l'anno 2001

Codice	Esperimento	Gruppo
1277	BRIC	5

Struttura

BARI

COMPOSIZIONE DEL GRUPPO DI RICERCA

	RICERCATORI		Qualifi	ca			uale				Quali	ifica		Jale
		Dipen	denti	Inca	richi	Affer.	cent			Dipe	ndenti	Inca	arichi	cent
N	Cognome e Nome	Ruolo	Art. 23	Ricerca	Assoc.	Gruppo	Per	N	Cognome e Nome	Ruolc) Art. 23	, Ass.	Tecnol.	Per
1	Brautti Giulio			P.O.		5	30	1	Variale Vincenzo	Tecn				50
2	Clauser Tarcisio			P.A.		5	80							
3	Raino' Antonio			P.A.		5	70							
4	Stagno Vincenzo			R.U.		5	80							
		<u> </u>		<u> </u>							<u> </u>			
		<u> </u>								 				
			-							<u> </u>				
		+								+				
		+								+		+		
				-							_			
		-								+				
											+			
		-		-						-	+	-		
				-				Νu	mero totale dei Tecnolo	nai				1.0
								Те	cnologi Full Time Fauiv	alent	ł			0.5
								Ľ						0,5
											Qua	lifica		ale
		<u> </u>		<u> </u>						Diper	ndenti	Inca	arichi	antu
								Ν	Cognome e Nome	Ruolo	Art. 15	Collab.	Assoc.	erce
		+							Boggia Antonio					50
		-						1	Valentino Vincenzo	Cter				60
								2						
														+
		-												+
		1		1										1
													[
													L	
		<u> </u>											ļ	<u> </u>
		<u> </u>	<u> </u>										ļ	
		<u> </u>											 	
		<u> </u>											 	
			-	-										
														+
														+
		1												+
N I	mara tatala dai Diasas		<u>t</u>	<u>t</u>			40						<u> </u>	+
		atori 					4,0	NU	mero totale del Tecnici					∠,∪
Ric	ercatori Full Time Equ	ivalen	t				2,6	Те	cnici Full Time Equivale	nt				1,1

Mod. EC/EN 7

Preventivo per l'anno 2001

Codice	Esperimento	Gruppo
1277	BRIC	5

Struttura

BARI

COMPOSIZIONE DEL GRUPPO DI RICERCA (cont.)

	LAUREANDI	Asso	ciazione		
	Cognome e Nome	SI	NO	Tit	tolo della Tesi
Mor	ea Annarita Relatore A. Rainò	O S	I O NO	Tr	rasporto di un fascio di elettroni in una sorgente di ioni intrappolati
	Relatore	ΟS	I O NO		
	Relatore	ΟS	I O NO		
	Relatore	ΟS	I O NO		
	Relatore	O S	I O NO		
	Relatore	OS	I O NO		
	Relatore	O S	I O NO		
	Relatore	O S	I O NO		
	Denominazione		mesi-uon	no	SERVIZI TECNICI
1	Elettronica		1		
	NTERAZIONI C	ONI		C	JSTRIE (COMMESSE HIGH TECH)
DE	NOMINAZIONE			D	ESCRIZIONE PRODOTTO O COMMESSA

Preventivo per l'anno 2001

Codice	Esperimento	Gruppo
1277	BRIC	5

Struttura

BARI

REFEREES	DEL PROGETTO
Cognome e Nome	Argomento
Vaccaro Vittorio	
Gammino Santo	

MILESTONES	PROPOSTE PER IL 2001
Data completamento	Descrizione
Giugno 2001	assemblaggio apparato
Dicembre 2001	test del sistema come sorgente di ioni

COMPETITI		
LEADERSH	IPS NEL PROGETTO	
Cognome e Nome	Funzioni svolte	
Cognome e Nome	Funzioni svolte	
Cognome e Nome	Funzioni svolte	
Cognome e Nome	Funzioni svolte	
Cognome e Nome	Funzioni svolte	
Cognome e Nome	Funzioni svolte	
Cognome e Nome	Funzioni svolte	

Ŀ

Preventivo per l'anno 2001

Codice	Esperimento	Gruppo
1277	BRIC	5

Struttura

BARI

Consuntivo anno 1999/2000

LAUREATI		
Cognome e Nome	Titolo della Tesi	Sbocco professionale
Laurea in		
Laurea in		
Laurea in		
Laurea in		
DOTTORI di F	RICERCA	
Dott in		
Dott in		
Dott in		
Dott in		
PRESENTAZION	II A CONFERENZE SU INVITO E SEMINAR	I SIGNIFICATIVI
Relatore	Titolo	Conferenza o luogo
V. Variale	BRIC Project	TWIST II: GANIL - CAEN

Preventivo per l'anno 2001

Codice	Esperimento	Gruppo
1277	BRIC	5

Struttura

BARI

Consuntivo anno 1999/2000

SIGNIFICATIV	E VARIAZ	ZIONI DI	BILANCIO		
Capitolo	Variazione (ML)	Motivazione			
Missioni Interne					
Missioni Estere					
Traporti e Facchinaggio					
Spese Calcolo					
Affitti e Manutenzioni					
Costruzione Annarati					
Totale storni					
CONFERENZE,	WORKSH	OP e SC	UOLE ORG	ANIZZATE in	ITALIA
Data	Titolo				Luogo
SIGNIFICATIVE (COMMESS	EERELA	TIVO IMPOR	ТО	
ANAGRAFICA FORNITORE	C	DESCRIZIONE PRO	DDOTTO O COMMESSA	A	IMPORTO (ML)

Preventivo per l'anno 2001

Codice	Esperimento	Gruppo
1277	BRIC	5

Struttura

BARI

Consuntivo anno 1999/2000

MILESTONES	RAGGIUNTE
Data completamento	Descrizione
Settembre 2000	costruzione e test: e-gun + collettore
Dicembre 2000	costruzione camera di ionizzazione
Commento al conseguimente	o delle milestones
Le milestones sono state ritarda sono partiti in ritardo.	ate perchè, a causa del sub-judice, il finanziamento dell'apparato é stato ottenuto in ritardo e quindi gli ordini

SVILUPPO DI STRUMENTAZIONE INNOVATIVA

Ricadute su altri gruppi, sul sistema industriale e su altre discipline

Preventivo per l'anno 2001

Codice	Esperimento	Gruppo
1277	BRIC	5

Struttura

BARI

Elenco delle pubblicazioni anno 1999/2000

Esperimento BRIC Attivita' svolta nel periodo gennaio - giugno 2000

Durante i primi sei mesi del 2000 l'attivita' di BRIC si e' svolta nelle due direzioni:

- <u>Disegno e progettazione dell'apparato</u>: è stato definito completamente il disegno di progetto dell'intero apparato: sorgente di elettroni (Pierce gun da 1.0 ampere con catodo 'reserve' con $\Phi = 10$ mm); camera di deriva degli ioni con quadrupolo RF (L = 110 cm, $\Phi = 150$ mm) completamente immersa in due solenoidi (L = 50 cm) separati tra loro di d = 10 cm; collettore degli elettroni monostadio con quadrupolo elettrostatico di focheggiamento per gli ioni al foro di ingresso/uscita praticato sulla parete di fondo del collettore. Tutte le varie componenti sono anche state ordinate al Budker Institute of Nuclear Physics (BINP) di Novosibirsk, escusi i due solenoidi.
- Simulazione numerica della dinamica del fascio di elettroni e di quello degli ioni: la • propagazione del fascio di elettroni dal catodo al collettore di raccolta attraverso tutto il breeder è stato simulato con il noto codice: EGUN,. Tale codice prende in considerazione anche la carica spaziale, ma non e' possibile valutare l' azione del campo del quadrupolo RF. Tale valutazione e' pero' stata fatta con il nostro codice, BRICTEST, appositamente sviluppato e di cui si parlera' piu' diffusamente in seguito. La simulazione della dinamica degli ioni nel quadrupolo RF è stata fatta acquisendo il noto codice SIMION. Con tale codice e' stato anche possibile introdurre il campo magnetico longitudinale dei solenoidi dimostrandone l' effetto destabilizzante in combinazione con il campo quadrupolare. Ma SIMION non tiene in conto della carica spaziale del fascio di elettroni. Il codice da noi sviluppato invece, BRICTEST assicura la valutazione contemporanea dell'effetto del campo quadrupolare, del campo magnetico longitudinale e della carica spaziale degli elettroni. Con tale codice e' stato possibile dimostrare la stabilità del fascio di elettroni nel quadrupolo RF (impossibile con EGUN).

Il risultato piu' interessante di queste prime simulazioni con BRICTEST, ci sembra di poter affermare che sia stato quello della conferma dell'azione di filtro di massa esercitata dal quadrupolo RF. Variando infatti opportunamente i valori della componente DC e di quella AC della RadioFrequenza, e' possibile selezionare uno stretto range di masse con dato stato di carica che risultano stabili e quindi possono essere estratte dal breeder, mentre le altre sono eliminate. L' azione di filtro risulta potenziata a stati di carica maggiori (*).

(*) Report BRIC, allegato

The BRIC Experiment: Project Study and Simulations

G. Brautti, T. Clauser, A. Rainò, V. Stagno, Dipartimento di Fisica dell'Università and INFN - Sezione di Bari, Italy V. Variale, Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Bari, Italy P. Logatchov, Bunker Institute of Nuclear Physics (BINP), Novosibirsk, Russia

Abstract

This work deals with the "charge state breeder" that will be tested at INFN Laboratory of Bari (Italy). The breeder, based on the Electron Beam Ion Source (EBIS) scheme, is designed for applications in Radioactive Ion Beam (RIB) production facilities based on the Isotope Separation On-Line (ISOL) method in the framework of the SPES project of the INFN LNL laboratory (Legnaro). Some improvements with respect to the classical EBIS have been foreseen and numerically simulated. The insertion in the ion chamber of a RF - Quadrupole, aiming to filtering the unwanted masses, is the most relevant change with respect to the classical EBIS. The breeder design and numerical simulation results of the electron and ion beam propagation are reported.

1 INTRODUCTION

The SPES Project at the LNL-INFN of Legnaro (Padua) [1] aims to assembling an advanced facility for Radioactive Ion Beam (RIB) production based on the Isotope Separation On-Line (ISOL) method. In the framework of the SPES project, our INFN group in Bari is involved in the development and testing of a "*charge state breeder*" of the EBIS (Electron Beam Ion Source) type: BRIC. The accelerated radioactive atoms will have probably a mass lying in the range 80-200 a.m.u. A facility of this type, has two acceleration stages (see Fig. 1).

Fig. 1: ISOL-Facility Scheme

The primary accelerator is intended to provide the ion beam incident on the target. The produced radioactive species have to be ionized, elevated in charge state and mass separated. The secondary stage is intended to accelerate the radioactive ions at the desired energy before they reach the experimental area. After the production, the radioactive species enter the ion source to be ionised. Then the singly charged ion beam is injected into a charge state breeder device to enhance the ion charge state at high level. This allows to increase the total efficiency of the beam transmission and to lower the cost of the secondary accelerator. For efficient acceleration by compact LINAC's, charge over mass ratios greater than 1/10 are required and a value between 1/9 and 1/4 seems to be a good choice [2]. At the present state of art, other than the usual stripping tecnique, two sources type seems useful for charge state breeding: the Electron Cyclotron Resonance Ion Source (ECRIS) and the Electron Beam Ion Source (EBIS). A comparison between the performances of this two ion sources have been reported by several authors (see for example [2,3]).

In an EBIS source, the ion charge state enhancement is obtained through the interaction with an external electron beam. In a typical scheme of the source the electron gun, the ion chamber and the collector are coaxial and the ions are injected and extracted from the same side of the set up. The injected ions are trapped in a longitudinal potential well where they remain until the extraction. Two injection mode for the ion beam have been considered up to now [2]:

• <u>fast injection mode</u>:

where the ions are decelerated before the injection, enter the breeder through the collector and are finally trapped by raising the potential barrier on the collector side. The ions must be injected in a pulse whose length has to be shorter than the round trip time in the potential well.

• slow injection mode:

where the ions have an energy higher than the potential barrier on the collector side and enter continuously the chamber during the confinement time. They reach a higher charge state during one round trip time and then remain trapped in the confinement area.

For the fast injection mode the continuous ion beam must be pre-bunched, so a trap for accumulation, cooling and bunching is requested (as in REX-ISOLDE (CERN)). However the number of particles that can be accumulated in a Penning source is limited. On the contrary for the slow injection or accu-EBIS mode no trap is required, but the electron space charge force can be directly to transverse contain the ions during the charge state breeding. The number of ions that can be contained in an EBIS depends on the electron beam current I_e and energy U_e , on the confinement length ℓ and on the reachable fraction of space charge compensation k which is $\tilde{50\%}$. This number is given by:

(1)
$$N_{q}^{+} \le k \sqrt{\frac{m_{e}}{2e^{3}}} \frac{\ell}{q} \frac{I_{e}}{\sqrt{U_{e}}}$$

2 BRIC EXPERIMENT

2.1 Set-Up Assembly

The BRIC experimental set up is, in the test assembling, the same as the classical one just described before in the introduction. The general scheme of the breeder is shown in Fig. 2.

Fig. 2: BRIC Set-Up Assembly

In this configuration, the input and the output of the radioactive ions are on the same side of the device: the hole aperture on the right side of the collector. In this way, the alignment of the electron gun and the electron beam collector with the ion drift chamber results in a more compact device and can aids to reduce same geometrical problems.

This choice cannot be the better choice from the point of view of the whole ISOL facility line and different breeder configurations are in order for the future studies. A possible new assembling where the electron gun and collector axis will have an angle with respect to the ion chamber axis is shown in Fig. 3.

Fig. 3: A possible future BRIC configuration

This configuration, just adopted in the our pioneer experiment TIS (Trapped Ion Source) [3], has the advantage to inject and extract the ions on the opposite sides of the breeder by leaving the radioactive ion drift axis unchanged.

2.2 Electron Gun and Collector

The BRIC electron gun (Fig. 4) has been chosen having in mind the device major commercial qualities together with the minor cost. So a classical Pierce gun supporting a dispenser cathode with $\mathbf{E} \sim 10 \text{ mm}$ providing a current up to 1.5 A has been selected.

Fig. 4: Electron Gun

The beam can be focused and modulated by controlling the voltage of the Pierce electrode. The output energy can be raised up to 10 keV. The transverse dimensions of the beam are reduced to about 4 mm by the increasing magnetic field of the solenoid on the ion chamber. Actually the gun will be placed at the inflexion point of the solenoid magnetic field (semi-immersed flow configuration). These dimensions are maintained throughout the ion drift chamber by neglecting the whole beam oscillations (beam scallop).

The collector (Fig. 5) allocates two static quadrupoles to focus the ions at the exit hole.

Fig. 5: Electron Collector

The tail of the solenoid field have to be cut on the collector zone in order to increase the efficiency of the electron beam collection and to avoid the electrons to come back towards the ion chamber and towards the gun. The static quadrupoles aid to focus the ions at the exit hole.

2.3 The Ion Chamber

The ion chamber (Fig. 6) has been designed to allocate the drift tubes, the barrier electrodes for the longitudinal ion trapping and the RF-Quadrupole. All the feed troughs for DC voltage and RF power supply, diagnostics and so on, have been inserted in the central zone of the chamber.

Fig. 6: Ion Chamber

The overall chamber (110 cm length) is immersed in the longitudinal magnetic field of two solenoid (50 cm long, 10 cm apart). The current in the windings has been chosen to reach a maximum field on the axis of ~ 2 kGauss. The magnetic field is important to ensure the highest possible electron beam current density J thus reducing the ion-beam containment time τ_c to reach the required charge state; so a much higher magnetic field intensity should be required (around 1 T). However this can be obtained with corresponding major cooling problems and cost. The chosen field value on the axis permits to reduce the beam diameter to ~ 4 mm and to reach (with the maximum of the electron beam current of 1.5 A) a value of J ~ 10 A/cm².

BRIC Charge Breeding Parameters:

Following the SPES project requirements, if an ion mass of about 100 a.m.u. and a charge state of 10 (charge over mass ratio = 1/10) is considered, from the condition [4]:

$$J \bullet \tau_c \sim 3 \div 4 [A \bullet sec/cm^2]$$

the resulting containment time τ_c , for electron beam current density J of the order of tens A/ cm², is in the range: $100 \div 300$ msec.

2.4 The RF- Quadrupole

The Fig. 7 reports the transverse section of the BRIC ion chamber together with the RF-Quadrupole. The design parameters have been chosen accordingly to the parameter $\eta = r/r_0$ where r is the cylinder radius and r_0 is the distance of the cylinder from the axis). Currently the value of the η parameter is fixed as the "magic number" $\eta = 1.145$. However the best approximation has been recently demonstrated to be $\eta = 1.1$ [5]. So we designed our quadrupole with this last assumption.

3 TRANSVERSE PARTICLE DYNAMICS IN THE RF QUADRUPOLE

3.1 Pure RF Quadrupole

The theory of the RF Quadrupole has been completely developed (see for example [6,7]). Here only some important results are reported. In general the electrode applied signal has two components: a DC component U, sometime called equalizing voltage, and a RF component V. The particle motion equations, can be expressed, in both the transverse coordinate planes, through two Mathieu equations:

(2)
$$\begin{cases} \frac{d^{2}x}{d\tau^{2}} + (a_{x} - 2q_{x}\cos 2(\tau - \tau_{o}))x = 0\\ \frac{d^{2}y}{d\tau^{2}} - (a_{y} - 2q_{y}\cos 2(\tau - \tau_{o}))y = 0 \end{cases}$$

where: $\tau = \frac{1}{2}\omega t$; $a_x = a_y = \frac{4q_i U}{m_i \omega^2 r_o^2}$; $q_x = q_y = \frac{2q_i V}{m_i \omega^2 r_o^2}$?

Here q_i and m_i are the ion charge and mass respectively, r_o is the quadrupole bore radius, ω is RF angular frequency and τ_o is the initial phase of the RF with respect to the particle. It can be shown that the maximum displacement of the particle does not depend on the initial coordinates and velocity but on the phase τ_o . The theoretical results on the Mathieu equations show that the motion is stable only when the coefficients a_x and q_x are chosen within same "stability regions" for both the transverse planes. In the mass filter theory the stability region of interest is restricted to a small quasi-triangular zone in the positive (a, q) plane. Owing to the symmetry around both axes x an y, often only the positive (a, q) quadrant of the stability diagram of base q = 0.9 and vertex: a = 0.2334, q = 0.706 is considered, as shown in Fig. 8. The major filtering is obtained for values of a near the vertex $a_0 = 0.2334$ corresponding to $q_0 = 0.706$. The ratio: u = a / q = 2U/V is only dependent on the DC and AC components of the Radio-Frequency. For a fixed charge state, the points corresponding to the given masses are all on the working line corresponding to the chosen U and V RF components. The intersection of this line with the stability region determines the stable masse range. The slope of the line, and consequently the range of the stable masses, can be changed by varying the value of U and V.

Fig. 8: Mathieu first stability zone

3.2 Solenoid Magnetic Field and Electron Beam Space Charge Effects

When the longitudinal field of the solenoid and the electron beam space charge force are taken into account, the stability diagram is quite modified. Namely the new equations of the ion motion in the plane (x, y) depend also on two other coefficients accounting for the magnetic field and the electron beam space charge. A simple model can be assumed to evaluate the space charge effect since within the ion chamber the electron beam can be roughly assumed cylindrical of constant radius r_b owing to the solenoid containment and by neglecting the small scallop effect. Thus the new trajectory equations can be written as:

(3)
$$\mathbf{r} < \mathbf{r}_{b} \Rightarrow \begin{cases} \frac{d^{2}x}{d\tau^{2}} - b\frac{dy}{d\tau} + (\mathbf{a}_{x} + c - 2q_{x}\cos 2(\tau - \tau_{o}))\mathbf{x} = 0\\ \frac{d^{2}y}{d\tau^{2}} - b\frac{dx}{d\tau} + (\mathbf{a}_{y} + c - 2q_{y}\cos 2(\tau - \tau_{o}))\mathbf{y} = 0 \end{cases}$$

if the ion is in the electron beam, and:

$$(3') \quad \mathbf{r} \ge \mathbf{r}_{b} \quad \Rightarrow \quad \begin{cases} \frac{d^{2}x}{d\tau^{2}} - b\frac{dy}{d\tau} + \left(a_{x} + c\left(\frac{\mathbf{r}_{b}^{2}}{r^{2}}\right) - 2q_{x}\cos 2(\tau - \tau_{o})\right)x = 0\\ \frac{d^{2}y}{d\tau^{2}} - b\frac{dx}{d\tau} + \left(a_{y} + c\left(\frac{\mathbf{r}_{b}^{2}}{r^{2}}\right) - 2q_{y}\cos 2(\tau - \tau_{o})\right)y = 0 \end{cases}$$

if the ion is out of the electron beam.

In Eqs. (3) the new parameters:
$$b = \frac{2q_i B}{m_i \omega}$$
 and $c = \left(\frac{1}{4\pi\epsilon_o}\right) \frac{8q_i}{m_i \omega^2 r_b^2} \frac{I_e}{v_e}$ are been

introduced. The fist one is related to the solenoid field B, whereas the second one take into account the electron beam space charge force: I_e is the beam current intensity and v_e the electron velocity.

Nevertheless also in this case, new stability regions can be identified [9]. The magnetic field and the electron beam space charge act in opposite way: the first one reshapes and reduce the stability region area, whereas the second one increases the stability area, due to the enhancement of the transverse containment of the ions.

4 BRIC NUMERICAL SIMULATIONS

4.1 Electron Beam Simulation

The electron beam propagation from the gun to the collector has been numerically simulated by the well known EGUN code [10]. Several possible experimental conditions and configurations have been tested. The example shown in Fig. 9 refers to an electron energy of 10 keV and electron beam current 1 A. The solenoid magnetic field is B = 1.8 kGauss and the gun is in semi-immersed flow configuration. Evident from the figure is the shrinking of the beam up to the ion chamber input due

to the semi-immersed flow configuration. Evident in the figure are the whole beam small oscillations (scallop), and the deep in the central zone of the ion chamber due to the gap (10 cm) between the two solenoids.

Fig. 9: BRIC Electron Beam Simulation

4.2 Ion Motion in the RF – Quadrupole (SIMION Code)

To simulate the ion motion in the drift chamber, the code SIMION has been used [9]. Several experimental conditions have been simulated and the effect of the solenoid field has been evaluated. An example of ion stable trajectories without magnetic field is shown in Fig. 10.

Fig. 10: RF - Quadrupole Ion trajectories

The tune in SIMION is defined by fixing the q value to 0.706 and by decreasing the a value from the maximum 0.2334 (Tune = 100%) down to zero.

The effect of the solenoid magnetic field (generating instability) can be observed in the example reported in Fig. 11 (same tune 97 % as in Fig. 10, longitudinal section view). By lowering the tune value (77 %), new stable trajectories can be observed for the same magnetic field (see Fig. 12).

Fig. 11: Instability Effect of the Solenoid Field on the Ion Trajectories

Fig. 12: Stable Ion Trajectories for a Lower Tune Value

4.3 BRICTEST Code Ion Simulation

The EGUN Code is not useful for quadrupole analysis. The SIMION Code cannot evaluate the electron beam space charge forces and the charge state evolution of the ions during the interaction with the electron beam. Thus we are developing an appropriate numerical package (BRICTEST) to take into account all the physical problems involved. The routines already working allow to evaluate both the solenoid and electron beam space charge effect, whereas work is in progress to include all the physical processes involved in the ion-electron interaction to fix the requested time to reach the desired ion charge state level. In Fig. 13 some well known results, reproduced with BRICTEST, are shown. Here, a ~ 0.23 and q = 0.706 (vertex of the first stability region). The ion motion is stable.

In Fig. 14 a longitudinal magnetic field B = 1.8 kGauss has been inserted with the same values of the a and q parameters. The generation of instability is evident as deduced from the SIMION simulations.

Fig. 14: Solenoid Effect on Ion Trajectories

Finally the space charge force due to the electron beam has been added. In the preceding conditions we observe that a beam of 5 keV and 100 mA is sufficient to obtain again the ion motion stability. The results are shown in Fig. 15.

Fig. 15: RF – Quadrupole + Solenoid + E-beam Space Charge

5 RF – QUADRUPOLE MASS FILTERING

From the simulation results obtained up to now, the filtering action of the RF-quadrupole resulted evident. By plotting the mass range versus the AC component of the quadrupolar field, for fixed DC component value, stability and instability regions can be enlighten. This shows the possibility to select the mass range of interest with a good resolution by varying the amplitude of the RF DC and AC components. A particularly intersting example for zero DC component, RF frequency of 1 MHz and mass range $80\div200$ (as probably will be the case of the SPES project) is reported in Fig. 16. Here, the chosen parameter values are: electron beam current Ie = 100mA; electron energy We = 5 keV; solenoid magnetic field on the axis B = 1.8 kGauss. In Fig. 16 a), b), and c) the effect of the increasing charge state level can be observed.

Although the analysis of the example reported and of all the other tests, shows that the mass separation is possible, however the complexity of the parameter connections needs still a lot of work. Namely the evolution of the charge state level in the breeder must be analyzed in a deeper way to understand how the masses of interest can be elevated at the highest charge state without instability generating.

Fig. 16 b): Charge Number Z = 6

Fig. 16 c): Charge State Number Z = 8

6 CONCLUSIONS

The numerical simulation of the charge state breeder BRIC show that it is possible to obtain an increase of the mass separation through the insertion of an RF-quadrupole into the ion chamber. The mass filtering action depends on a complex way on several parameters that can be varied to match the best experimental conditions, and to increase the containment of the desired ion masses with the required charge state level of ionization. The strong instability of the light masses obtained through the quadrupole at lower charge states can help to increase the chamber vacuum by eliminating the residual gas masses.

A lot of work is necessary to understand the problems related to the ion containment and the stability conditions during the charge state enhancement.

REFERENCES

- [1] SPES "Project Study", LNL INFN (REP), 145/99
- [2] U. Köster, O. Kester and D. Habs, Rev. Sci. Instrum., 69 (1998) 1316;
- [3] J.A. Lettry, PAC99 Proc., New York, (1999), 72;
- [4] G. Brautti et al., Proc. PAC '97, Vancouver (1997)
- [5] M. C. Vella, Nucl. Instrum Meth., 187(1981)313
- [6] J. Schulte, et al., Rev. Sci. Intrum., 70 (1999) 3566;
- [7] Dawson P. H., "Quadrupole Mass Spectrometry and Its Applications", Elsevier, Amsterdam, 1976; Dawson P. H., "Quadrupole mass spectrometers, in: Applied Charged Particle Optics, Vol.13B, ed. By A. Septier, Academic Press, New York, 1980.
- [8] Murch R. E. and Hughes R. J., "Quadrupole Storage Mass Spectrometry", John Wiley & Sons, New York, 1989.
- [9] Fischer E., Z. Phys., 156 (1959) 26.
- [10] Herrmannsfeldt, SLAC Report, 226 (1979).
- [11] Dahl D. A., "SIMION 3D", Idaho Nat. Eng. Lab., 1995.

Esper	imento		gr	uppo <u>Ra</u>	ppresentan	<u>te nazio</u>	nale	<u>Stru</u>	uttura re	s_naz	nuovo_continua		<u>l</u>
BRIC			5	Vincenzo Stagno		BARI		continua					
STR.	ESPERIM.	Missioni interno	Inviti ospiti stran.	Missioni estero	Mater. di Cons.	Spes Sem	Tras. e Fac.	Pub. Scien.	Spese Calc	Aff. e Manut. App.	Mater. invent.	Costruz. apparati	TOTALE
	Persona	ale											
	Ricercat FTE	tori	4,0 2,6	Tecnolo FTE	ogi	1,0 0,5	Tec FTE	nici		2,0 1,1		Servizi m	esi uomo 4,0
BAF	Rapporti (FTE/num	iero) F	Ricercato	ri	0,65	5 Rice	ercate	ori+Te	cnolog	gi		0,62
	BRIC	21		17	20		3				21	205	287
	di cui sj												
	Totali	21		17	20		3				21	205	287
	di cui sj												
	Richieste	/(FTE ric	ercato	⊳ri+tecno	ologi)		9	2,58					
тот	ALI												
	Totali	21		17	20		3				21	205	287
	di cui sj												
Con	fronto co	on il mo	dello	EC4		· · ·							
Mod.	EC4 dati	21		17	20		3				21	205	287
Total	i-Dati EC4												
Pers	Personale												
	Ricercatori			Tecnolo	ogi	1,0	Tec	nici		2,0		Servizi m	esi uomo
	FTE		2,6	FTE		0,5	FTE			1,1			4,0
R	apporti (F1 Ric	FE/nume hieste/(F	ro) Ric TE ric	cercatori cercatori	+tecnolo	0,65 l gi)	Ricer	cator	i+Tecı 92,5	nologi 8			0,62