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ABSTRACT

This paper presents the basic motivations and ideas of a next generation LGT

computing project. The goal of the project, that we refer to as apeNEXT, is

the construction and operation of several large scale Multi-TFlops LGT en-

gines, providing an integrated peak performance higher that 10 TFlops, and a

sustained (double-precision) performance on key LGT kernels of about 50 % of

peak. The software environment supporting these machine is organized in such

a way that it allows relatively easy migration between apeNEXT and more

traditional computer systems. We describe the physics motivations behind the

project and the hardware and software architecture of the new LGT engine.

Several appendices provide details on preliminary work.
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1 Introduction

Several research groups in the Lattice Gauge Theory (LGT) community have

developed LGT optimized massively parallel processors [1]. These systems have

provided in the last decade a signi�cant fraction of all compute cycles available

all over the world for lattice simulations. In this framework, INFN and DESY

have developed the APEmille parallel processor. APEmille is an LGT oriented

massively parallel number-cruncher [2], providing peak performance of several

hundred G
ops. The �rst APEmille systems have been commissioned in late

1999 and more machines will become available in the next months (see later for

details).

We expect APEmille machines to become the work-horse for LGT computing

in several laboratories in Europe in the next three-four years. It is however

clear (and explained in details in a following section) that APEmille is unable

to support serious LGT simulations at the level expected after the year 2003.

The continuing physics motivation to pursue numerical studies of Lattice

QCD and the level of needed computing resources have been analyzed in details

by a review panel appointed by the European Comittee for Future Accelerator

(ECFA) [3]. We fully endorse the conclusions of the ECFA report (which can

be regarded as an ideal introduction to the present document). In this paper we

present a proposal for a new lattice QCD project that builds on the experience

of the previous generation APE machines and tries to implement several of the

recommendations of the ECFA panel. This paper is an enlarged and improved

version of a preliminary proposal [4], submitted to the INFN Board of Directors

in summer 1999.

The new project (that we refer to as apeNEXT) is characterized by the

following architectural goals:

� an expected peak performance for large machines in excess of 5 TFlops,

using double precision 
oating point arithmetics.

� a sustained (double precision) eÆciency of about 50% on key LGT kernels

(such as the inversion of the Dirac operator).

� a large on-line data storage (512 GByte to 1 Tbyte for large machines).

� input/output channels able to sustain a data-rate of 0:5Mbyte=sec=Gflops.

� a programming environment that allows relatively straightforward and

easy migration of physics codes between apeNEXT and more traditional

computer systems.
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From the point of view of the organization of the project, the following points

are in order:

� the apeNEXT architecture will be very closely optimized to LGT sim-

ulations. In other words, apeNEXT will be more tuned towards LGT

than APEmille.

� The general know-how of APEmille, as well as several important building

blocks, will be heavily re-used in the new project (properly rescaled to

keep technology advances into account). This is a key point that we plan

to leverage on, in order to shorten development time.

� We plan from the beginning the installation of several large machines at

approximately the same time at several collaboration sites. (Collaboration

membership is also somewhat enlarged in comparison with APEmille).

Stated otherwise, we plan to build up very high processing performance

for LGT (of the order of several tens of TFlops) by operating in a loosely

coordinated way several machines.

� Provisions to facilitate an industrial exploitation ofthe project are not one

of the stated goals of the project. We do see however that several building

blocks of the project (most notably in the area of inter-node communi-

cations) may have an important impact on other areas of computing for

physics (and, more generally, for cluster computing or farming). We will

do our best to make our results reusable.

This paper describes the hardware and software architecture that we plan to

develop. It does not cover the organization of the project, the proposed schedule

of our activities and any �nancial issues. These points are considered elsewhere.

The paper is organized as follows:

� Section 2 discusses the physics goals of the project and their correspond-

ing computing requirements (in terms of processing performance, data

storage, bandwidth).

� Section 3 brie
y summarizes the APEmille architecture and substantiates

the need for a new project.

� Section 4 reviews similar planned or started projects.

� Section 5 surveys the status and prospects of some enabling technologies

for our project.

� Section 6 discusses advantages and disadvantages of custom versus o�-

the-shelf technologies for the processing element of the new computer.
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� Section 7 presents the global architecture of our new massively parallel

LQCD machine.

� Section 8 describes the details of the processing node.

� Section 9 covers the architecture of the interconnection network.

� Section 10 discusses several possible options for the topology and the

mechanical set-up of the system.

� Section 11 is the �rst section on software. Here we describe the pro-

gramming environment that we plan to develop for apeNEXT.

� Section 12 is a matching section discussing the operating system and

other system-software issues.

� Section 13 reviews the design methodology that we plan to follow in the

development of the system.

� Section 14 contains our conclusions.

Several appendixes present details on the R&D activities already under way.

2 Physics Requirements

In the de�nition of the new project we keep a clear focus on a very limited

number of important physics simulation areas, that set the physics requirements

for the new project.

The translation of physics requirements into machine parameters requires

certain assumptions about the algorithms to be used. We base our consider-

ations on tested algorithms such as SSOR-preconditioned BiCGstab and Hy-

brid Monte Carlo, for Wilson fermions with improved action [5]. New theoreti-

cal developments (domain wall fermions, Wilson-Dirac operators satisfying the

Ginsparg-Wilson relation, etc.) are likely to be implemented in a way which has

very similar computational characteristics as the standard Dirac operator.

We expect that in the years 2003-2006, large production LQCD simulations

will be mainly focused on the following lines:

� full QCD simulations (including dynamical fermions) on lattices with

sizes of the order of 483 � 96 (a physical system of L = 2 : : : 4 fm and

a = 0:1 : : : 0:05 fm). Dynamic quark masses should also decrease, with

a reasonable target corresponding to m�=m� ' 0:35 (although it is not

realistic to expect that both goals are obtained in the same simulation).
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� simulations in the quenched approximation on very large lattices (1003 �
100� 200) and large � (L = 1:5 : : : 2:0 fm and a = 0:1 : : :0:02 fm) for the

study of b physics with as little extrapolation as possible in the mass of

the heavy quark.

The �rst item is heavily CPU limited, since one has to solve the Dirac

equation repeatedly during the updating process. The second item is basically

memory limited, due to very large lattice size. In both cases, our target is a

resolution about two-times better than currently possible (implying, as discussed

later on, an increase in computing power of two orders of magnitude).

As a guideline to de�ne a new LQCD engine for these classes of problems,

we require that:

1. The node-topology and communication network is optimized for the lattice

sizes required in full QCD simulations. Since for many problems of LQCD

it is important to perform a �nite-size scaling analysis, it is desirable that

the machine performs eÆciently not only on large but also on compara-

tively small lattices, eg., in full QCD one may think of N3

L
�NT lattices

with NL = 16; 20; :::; 32 and 48, and NL � NT � 2NL. For smaller lat-

tices, as the required computing performance decreases, more traditional

machines (such as PC clusters) or previous generation dedicated systems

can be used.

2. The communication network has enough bandwidth to handle the large

degree of data exchange between neighbouring sites (and hence com-

pute nodes) needed in LGT computations. The interconnect architecture

should support the natural (APE-like) programming model with direct

remote data access [6]. This approach minimizes software and memory

overhead (and coding e�ort) for pre-loading of remote data.

3. The processing nodes sustain high performance on the execution of the

arithmetic and control operations which are relevant for the codes (or

at least their basic kernels) of full-QCD algorithms, in particular double

precision 
oating point arithmetics, memory access to �eld variables of

composed data structures, local and global program-
ow control, etc.

To obtain a good 
oating-point eÆciency for the execution of a given com-

putation, the compute power and memory bandwidth should be balanced

accordingly. This balance is usually measured in term of the parameter R,

de�ned as the ratio between the number of 
oating-point operations and

the corresponding memory accesses (in the corresponding data format).

A processor is balanced for a given algorithm if the R value required by

the algorithm is roughly equal to the R value allowed by the processor
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itself. In the case of the Dirac operator, which dominates usually the cost

in LQCD computations, a typical value is R ' 4.

4. Memory size, disk space and disk-bandwidth match each other and are well

suited to the problems we want to study. This means that all compute

intensive kernels must not be slowed signi�cantly because required data is

not available in main memory. We must keep all data in physical memory

as long as possible. In all cases in which this is not possible (e.g., for light-

fermion propagators on very large lattices) we must be able to temporarily

store on (and retrieve from) disk with large enough bandwidth.

These requirements shape the global architecture of the machine:

1. We consider architectures based on three dimensional grids of processors,

with nearest neighbour data-links. Reasonable sizes of the mesh of pro-

cessors that will be used for the simulation of large lattices are somewhere

in the range 83 � � � 123 � � � 163 nodes, where a physical lattice of 483 � 96

points can be readily mapped. For �nite size analyses on small lattices, a

mesh of 43 � � � 63 processors may be considered.

The size of the processor mesh dictates a lower bound on the communica-

tion bandwitdh between neighbouring processors. We de�ne by � the ratio

of local memory accesses (transfers between processor and its memory)

over remote memory accesses (transfers between neighbour processors),

which depends on the lattice size and the algorithm. Under the assump-

tion of balanced local bandwidth (i.e., processors are able to access enough

data in local memory to sustain their potential performance, see later for

details), e�ective bandwidth1 for remote communications must not be

lower than 1=� times the local bandwidth. Estimates of the required ratio

for a naive implementation of the Dirac operator using Wilson fermions

are given in table 1 for a sublattice of n3
L
�NT physical points and local

time direction per processor (note that, to �rst approximation, � ' 2nL).

A nice and simple trick can be used in the computation of the Dirac

operator to reduce the number of remote accesses. For the negative di-

rections the Dirac operator involves terms of the type U�(x� �) (x� �)

where the fermion term  and the corresponding gauge matrix (U) must

be fetched from the same place. We can therefore evaluate the product

U�(x � �) (x � �) on the remote node and transfer the result only. In

brief, all remote accesses involving gauge �elds disappear. Table 2 contains

the � values corresponding to the evaluation of the Dirac operator using

the above mentioned technique. We consider the comfortably increased

� values as an useful safety margin, that could be exploited to increase

1including the e�ect of the start-up latency for typical packet lengths.
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Linear lattice size �

33 5:8

43 7:8

63 11:6

83 15:5

Table 1: Local vs remote memory access patterns: � is the ratio of memory

accesses to local memory over memory accesses to neighbour nodes in a simple

implementation of the solver for the Dirac operator. � is estimated as a function

of the linear size of the sub-lattice mapped onto each processor.

the 
oating point performance of each node, at �xed remote bandwidth.

Clearly the actual values of � which can be accepted must be studied more

Linear lattice size �

33 7:5

43 10

63 15

83 20

3� 6� 6 11.25

3� 4� 4 9

Table 2: Local vs remote memory accesses: this table is the same as the previous

one, except that � is estimated taking into account the trick, described in the

text, that reduces remote accesses. The last two entries refer to non-square

sub-lattices that might be used when simulating a lattice of spacial size 483 on

large machines with 16� 8� 8 or 16� 12� 12 nodes.

carefully (possibly simulating architectural details of the mechanisms that

hide remote communications)

2. To discuss memory-size requirements in more details, one has to distin-

guish between the case of full QCD simulations and calculations in the

quenched approximation.

In full QCD simulations, by far the largest amount of time is spent in

the updating process. In this case, on-line memory has to be large enough

to allow for the implementation of eÆcient algorithms. State-of-the-art

update algorithms need a large number of auxiliary �elds on each lattice

site. We use as unity the amount of memory associated to one fermion

�eld (24 data words, corresponding to 192 bytes in double precision. We

call this quantity a fermion equivalent - feq - in the following). A generous
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Uab(x; �) gauge �elds 72 W 3 feq

S

��

ab
(x; 0) fermion propagator 288 W 12 feq

 
�

a
(x) (pseudo-) fermion �eld 24 W 1 feq

(� � F )��
ab
(x) Pauli term for improvement 72 W 3 feq

Table 3: Data structures used in Lattice QCD and corresponding memory re-

quirements (in words and fermion equivalent storage) per lattice point. Greek in-

dices run from 1 to 4 and latin indeces from 1 to 3. The �rst three entries are gen-

eral complex matrices, while the Pauli term is hermitian: (� �F )��
ab

= [(� �F )��
ba
]�.

estimate, leaving space for more sophisticated, presumably more memory

intensive algorithms, is about ' 200feq per site.

On the other hand, in the case of the quenched approximation, the up-

dating process may be neglected for both computing power and memory

requirements (less than 10feq per lattice site are needed). Instead, we have

to consider the memory requirement originating from the measurement of

a heavy-light form-factor. The database needed for such a calculation

consists of one gauge �eld con�guration, one Pauli term, Nl+Nh fermion

propagators (Nh and Nl are the numbers of heavy and light fermions

respectively), each replicated for the number of momenta and operator

insertions used and for each lattice site (typical cases, being Nh = Nl = 4,

3 momenta and one operator insertion). Quenched QCD will be used es-

sentially for heavy quark phenomenology. Here the real problem is the

extrapolation to the b quark mass. To be safe one should have a physical

cuto� much larger than the masses that enter the simulation. Then large

lattices, of the order of 1004, are necessary.

We summarize our memory requirements in table 3 (where the size of the

relevant data structures are presented) and in table 4, where actual mem-

ory sizes are collected, under the assumptions of using double precision
2 throughout. From the �rst two lines of table 4, we see that we cannot

expect to keep the whole data-base in physical memory when large lattices

are considered. However, if only two propagators at the time are kept in

memory, for ease of programming, while the others are either recalculated

(the heavy ones) or stored and reloaded from disk (the light ones), memory

requirements reduce sharply (third line in the table).

We conclude that, by judiciously swapping data to disks, a memory size

of the order of � 1Tbyte is a good compromise for both our case studies.

Alternatively, one might consider two memory options: a small memory

2The necessity of double precision arithmetic in full QCD has been investigated in the

literature [7] and will not be discussed here.

10



machine (' 500Gbyte) for full QCD and a large memory version (1 �
2Tbyte) for quenched studies.

Case updating measurement

small lattice, full QCD 400G 1:4T

large lattice, quenched QCD 200G 13T

large lattice + disk 200G 1:8T

Table 4: Total memory requirements for the case studies discussed in the text.

The line labelled + disk refers to the case in which two propagators only are

kept in memory (all others being swapped onto disk or re-computed).

3. Fast input-output is mandatory, as obvious from the previous point, for

studies on large lattices. As a rule of thumb, we may want to load or

store one (large lattice) propagator (' 250 Gbytes) in little more than one

minute. This requires a global bandwidth of the order of 2-3 Gbytes/sec.

For full QCD permanent storage of the con�gurations is required due to

the computing e�ort needed to generate them. This is a storage-density

(as opposed to bandwidth) problem which is independent of the machine

architecture and should be discussed in a di�erent context, with potential

links with the GRID project, likely to be supported by the European

Commission. In the case of large lattices in quenched QCD the strategy

of computing on the 
y without saving con�gurations is the best. Only

the �nal correlation functions are saved and this means at most a few tens

of MB per con�guration.

Processing performance is strictly speaking not a clear-cut requirement: the

more is available, the better. We can estimate how much is enough, however,

by extrapolating the present state of the art. A sustained performance of 300

GFlops (with perhaps 40% eÆciency) is now heavily used for full QCD simula-

tions on lattices of size 243� 48 [8]. If we assume a critical slowing down where

computer time grows like a�7 [9], we would like to have a sustained performance

two orders of magnitude higher if we want to halve a.

An ambitious target for our project is therefore a total installed performance

in the order of 10 : : :30TF lops. From the point of view of physics requirements,

it is not important that this computing power be sustained on a single system.

Several smaller machines can perform equally well (or perhaps better), as long

as each of them is able to handle large enough lattices.

Also, we must envisage the operation of some lower performance (and cor-

respondinlgy smaller memory) machines, where small lattices are handled and

11



algorithms, programs and physical parameters are tuned before a large calcula-

tion is moved onto a large production machine.

3 The APEmille project

In this section we brie
y review APEmille.

APEmille is the present generation APE project. It is based on the standard

structure of a large array of processing nodes arranged at the edges of a three

dimensional mesh and operating in SIMD mode.

At present, several medium-size installations are up and running, while sev-

eral larger units are under construction (see table 5). Considering all large and

small machines, the integrated peak performance available in fall 2000 will be

about 1 T
ops at INFN and about 400 G
ops at DESY. The largest single

system will have a peak performance of 250 (possibly 500 G
ops). Other insti-

tutions in Europe are procuring (or considering to procure) APEmille machines.

Site peak performance status

Rome 130 G
ops running

Zeuthen 64 G
ops running

Rome 260 G
ops planned June 2000

Zeuthen 260 G
ops planned December 2000

Milano/Parma 130 GFlops planned Sept. 2000

Pisa 130 G
ops planned Sept. 2000

Rome II 130 G
ops planned Sept. 2000

Rome 520 G
ops under discussion Sept. 2000

Table 5: A short list of some large APEmille existing installations and of the

largest APEmille installations planned for the near future.

In a typical critical LGT kernel (a solver for the Dirac operator) coded in

the high level TAO programming language, measured sustained performance in

single precision is about 44% of peak perfomance and in double precision it is

about 19 % of peak single precision (i.e. 80 % of peak performance in double

precision). Higher eÆciency can be obtained with more careful programming:

we have pushed single precision performances up to about 58 % of peak speed

writing the key portions of the Dirac solver in assembly.

In a later section, we will claim that an architecture a la APEmille continues

to be a very good choice for LGT computing. We see however a number of
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problems in APEmille, all pointing to the development of a new generation

system:

� Peak Performance APEmille machines can be made larger than we plan

to build, but not too large. The largest system that can be assembled with

the present hardware building blocks is a con�guration of 8�8�32 nodes,

corresponding to 1 TFlops peak performance (APEmille systems can be

con�gured in principle as 8�8�2n arrays). Still larger systems would need
some minor hardware development and would probably be not convenient

in LGT, since they have an unusual large number of nodes along one

dimension.

� Memory Size The very large APEmille machine described above has 64

Gbytes memory. This is still several times lower than discussed in the

section on requirements.

� Floating-point precision APEmille is basically a single precision ma-

chine (performance decreases by factors from 2 to four in double precision).

As discussed above, double precision will be necessary in future large LGT

simulations.

� Little space for improvements APEmille is architecturally very sim-

ple, since it relies on accurate and rigid hardware synchronization. This

style of synchronization is diÆcult to support if the system clock is in-

creased signi�cantly. For this reason, we see little space for incremental

improvements in performance.

4 A review of similar projects

In this section, we gather some information on similar projects, carried out

by other groups. To the best of our knowledge, the following activities are in

progress:

� CP-PACS

The CP-PACS collaboration have made a feasibility study of a future

project which follows the CP-PACS project. Extrapolating the data of

the performance obtained in recent full QCD simulations on the CP-PACS

computer, they have estimated the computer time required for a large-

scale full QCD calculation, with the quality of data comparable to that

of the present quenched QCD study on the CP-PACS. They assume that

lattice action and the simulation algorithm are identical to the present

simulation on the CP-PACS. Their estimate, ' 100 T
ops �year [10], is
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somewhat larger than the one of the ECFA panel. In addition to their

feasibility study, CP-PACS are carrying out basic research on the following

two topics, that they consider as very important technologies for the next-

generation of massively parallel computers:

{ Development of an architecture of high-performance memory-integrated

processor for the next generation massively parallel computers.

{ Establishment of a model of parallel I/O, parallel visualization and

man-machine interface, which can process eÆciently and 
exibly the

enormous amount of data generated by massively parallel computers.

CP-PACS hope they will have a chance to develop a next-generation com-

puter using the results of their basic research in the near future, but they

do not have a project at the present time.

� Columbia The Columbia group have oÆcially embarked on the design

and construction of their next machine [11]. The design e�ort is still on a

fairly high level with choice of processor and communications technology

being the �rst questions that have been resolved. Most signi�cant is the

choice of microprocessor, which is provided by an IBM PowerPC core.

This follows from an arrangement with IBM that permits to exploit pro-

prietary technology to construct a full processing node (memory included)

on a single chip. This feature provides the name to the new project name,

QCD on a Chip (QCDOC). The node will contain a PowerPC 440 core, one

64-bit, 1 G
ops FPU (an integrated part of the PowerPC architecture),

4 Mbytes of embedded DRAM and 8 bi-directional serial inter-processor

links, each operating at 0.5 Gigabits/sec. If they are able to achieve this

frequency, this would give a total o�-node communications bandwidth of

1 Gbyte/sec.

The group is now busy to determine the other details of the project and

begin the detailed design of the node.

We also include an arbitrary selection of two (out of the many) interesting

examples of PC-based cluster architectures for comparison.

� The Wuppertal Cluster ALiCE

The "Institut f�ur Angewandte Informatik" at Wuppertal University has

installed the �rst half of the Alpha-Linux-Cluster-Engine (ALiCE) in 1999.

When the system is fully installed, in May 2000, it will consist of 128 DS10

uni-processor workstations connected by a Myrinet multi-stage crossbar

switch. All CPUs will be upgraded to 600 Mhz Alpha 21264 EV67 chips

with 2 Mbyte second level o�-chip cache [12].
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The cluster is intended to perform eÆciently in several HPC application

pro�les at the University of Wuppertal, including computational chem-

istry, electrical engineering, scienti�c computing and simulations of quan-

tum �eld theories.

Of particular interest is the operability of this self-made system in a Uni-

versity's multi-user environment. In computer lab courses, the emphasis

is on "Physics by High Performance Computers". Several student groups

use the system simultaneously in interactive mode much alike a desk-top

system.

A forward looking ALiCE-project, to be carried out together with the de-

velopers of the ParaStation communication software from Karlsruhe uni-

versity, deals with optimization of eÆciency and data organization for AL-

iCE under real life conditions, in particular with the goal to make parallel

I/O and �le system functionalities available.

� PMS, The Poor Man's Supercomputer A PC cluster has also been

developed at E�otv�os University in Budapest [13]. The current version of

PMS has 32 PC's. Contrary to the previous example, the PMS project

has developed QCD-optimized communication hardware. They use dedi-

cated add-on boards to establish physical communications between nearest

neighbour PC's in a three dimensional array. The actual con�guration of

32 PC's can be imagined as a 2 � 4 � 4 mesh of processors. The system

uses a standard Linux operating system and the favoured programming

style is the well tested SIMD paradigm.

The present version of PMS is shaped by the requirement to reduce costs

as much as possible. Indeed, PMS uses cheap AMD K6-2 processors (de-

livering only 225 M
ops each) while the special purpose communication

interface has a bandwidth of just 2 MByte/sec. We consider the PMS as

a very good trade-o� between the advantages o�ered by the use of general

purpose systems and the performance boost that dedicated hardware is

able to provide.

5 Technological Scenarios

In this section we discuss forecasts about the state of the art for several enabling

technologies in the years 2001-2002. We cover the following points:

1. basic digital VLSI technology.

2. memory technology.

3. data-links.
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4. O�-the-shelf processors.

5. The Crusoe architecture.

We conclude the section with a discussion of the architectural implications of

the technology-driven choice of overcoming the strictly synchronous operation

of APE100 and APEmille.

5.1 VLSI technology

APEmille is based on a chip-set designed with a 0:5� digital CMOS technology.

A second source for the chip-set has been established, using a more advanced

0:35� technology. In the next few years, 0:25� and 0:18� CMOS technologies

will be readily available.

A comparison of some key features of the silicon technologies used in APEmille

and of a representative of both 0:25� and 0:18� technologies is made in table 6.

Feature ES2 0:5� Alcatel 0:35� UMC 0:25� UMC 0:18�

VDD 3.3 V 3.3 V 2.5 V 1.8 V

Gate delay 180 ps 100 ps 75 ps 36 ps

Gate density 10K=mm2 20K=mm2 45K=mm2 90K=mm2

Memory (1P) 11Kb=mm2 25Kb=mm2 44Kb=mm2 85Kb=mm2

Memory (2P) 6Kb=mm2 8Kb=mm2 16Kb=mm2 30Kb=mm2

Power/gate 0:5�W=MHz 0:4�W=MHz 0:2�W=MHz 0:1�W=Mhz

Table 6: A summary of some key parameters for digital silicon technologies used

in APEmille and proposed for apeNEXT. All values are directly obtained from

the relevant silicon foundries, except for the bit density of 1 Port or 2 Ports

memory arrays in the UMC technology. The latter are based on conservatively

applied scaling rules

The �gures quoted in the table refer to processes that are (or will be) readily

available through the same European silicon broker that helped us develop the

second source of the APEmille chip set.

Let us consider a scaled version of the APEmille processor. If we use a 0:18�

process, it should be easy to reach a clock speed between three to �ve times

higher than in APEmille, while we may expect to squeeze up to 9 times more

transistors onto the same silicon area. We can stay on the safe side planning to

use a clock frequency of 200MHz. An LGT optimized processor running at this
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clock frequency with one 
oating-point pipeline would peak at 1.6 G
ops , using

the well known normal operation a � b + c, performed on complex operands.

A chip three times more complex than J1000 (and three times faster) would

dissipate less than two times more power.

5.2 Memory Technology

We limit ourselves to memory systems used in future high-end PC's or low-

end workstations. This choice (the same as APE100 and APEmille) should be

the most e�ective to provide the highest level of integration, reduce costs and

guarantee part availability.

In the near future, planned memory systems are either RAMBUS DRAM's

or DDR SDRAM's.3

The DDR SDRAM (Double Data Rate Syncronous DRAM), is the evolution

of the mature SDRAM (Syncrounous DRAM) technology (widely used in the

APEmille machine). The SDRAM is a low latency burst oriented device made

of multiple (2 to 4) banks of asynchronous DRAM controlled by a synchronous

controller which allows pipelining of the I/O interface (one word is accessed

for every clock cycle). The Double Data Rate architecture realizes two data

transfers per clock cycle using both edges of the clock and one special reference

signal to fetch corresponding data.

The Rambus is a more advance memory architecture which works as a chip-

to-chip system-level interface rather than a conventional memory device. The

Rambus RDRAM (which stands for Rambus Direct Dram) shares the same

architectural idea of the SDRAM one, a core asynchronous plus a synchronous

controller. It makes use of a large degree of parallelism (32 interleaved memory

banks) on a narrow internal bus. The Rambus RDRAM is based on the Direct

Rambus Channel, a high speed 16-bit bus at a clock rate of 400 MHz, which

thanks to the adoption of a dedicated signaling technology (Rambus Signaling

Level) allows 600 MHz to 800 MHz data transfers.

In table 7 we summarize the main features of the two technologies, for cur-

rently available and next generation (less than 2 years from now) chips.

Some comments are in order:

� The simple architecture of the DDR SDRAM allows larger memory size

per device. For a given �xed amount of memory, this reduces the number

3In the following we do not distinguish between traditional DDR SDRAM and new
\
avour" DDR SDRAM like Sync-Link because both are evolutionary designs of the same

basic structure.
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DDR RDRAM DDR RDRAM

Data rate 200 MHz 800 MHz 400 MHz 800 MHz

Memory size 256 Mbit 128/144 Mbit 1 Gbit 256 Mbit

Organization x4,x8,x16 x16,x18 x16,x32 x16,x18

Peak bandwidth 0.4 GB/s (x16) 1.6 GB/s 1.6 GB/s (x32) 1.6 GB/s

Package TSOP(66) BGA TSOP(80) BGA

Power (VCC) 2.5 V 2.5 V 1.8/2.5 V 1.8 V

I/O type SSTL2 RSL SSTL (?) RSL (?)

Power cons. 80 mA 330 mA ? ?

Cost (norm.) 1.0 1.8 ? ?

Sample/Prod. Now/Now Now/Now 3Q99/4Q00 ?

Table 7: A summary of several important �gures for two options of dynamic

RAM's. The second and third columns refer to presently available DDR and

Rambus devices. The fourth and �fth colums refer to the expected evolution of

these devices in the next two years.

of used components.

� Since power consumption is proportional to the interface clock (a factor 4

between RAMBUS e DDR), aggregated memory systems using the DDR

SDRAM reduce the global consumption.

� On the other hand the extremely high peak bandwidth of the RAMBUS

allows to build a very fast memory system with minimum impact on board

space occupancy (compact BGA packaging).

� The logic complexity of a RAMBUS interface is much larger than for a

DDRAM controller (the latter could be easily designed on the basis of the

experience done in the realization of the APEmille memory controller).

On the other hand, several silicon foundries make a RAMBUS controller

available as a core cell.

We conclude this section by presenting in table 8 two possible DDRAM-

based memory systems for apeNEXT. The performance target is set by our

basic performance �gure, discussed in the previous subsection of 1:6Gflops and

R = 4, leading to a bandwidth requirements of at least 3:2Gbytes=sec (assuming

double precision data words throughout).

In conclusion, forthcoming memory technology is adequate to support the

processor performance discussed above. There is in fact reasonable space to

consider either fatter node processors, or multi-processor chips.
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chip-size 1 Gbit 1 Gbit

chip organization 32 bits 32 bits

chip number 4 2

word size 128 bit 64 bit

bank size 512 Mbyte 256 Mbyte

frequency 300 Mhz 400 Mhz

total bandwidth 4.8 Gbytes/sec 3.2 Gbytes/sec

power consumption 640 mW 400 mW

Table 8: Basic features of two possible memory systems for apeNEXT based

on DDRAM memory technology. Power consumption is estimated by re-scaling

data available for present generation systems

5.3 Data-link Technology

We now consider remote communications which, in our opinion, is a key tech-

nological challenge for the project.

Assuming our reference �gures - 1.6 G
ops per node, along with R = 4,

and � = 8 (as de�ned in the previous sections) - we require an inter-processor

communication bandwidth of about 400Mbytes/sec. As discussed above, several

code optimization steps are able to reduce the amount of data to be transferred.

The overlap between computation and communication can also be increased. All

this steps reduce bandwidth requirements. We will stick however to the previous

�gure, so a large safety margin is established.

The needed communication patterns are however very simple: communica-

tions are needed between nearest-neighbours (L-shaped paths, between next-

to-nearest neighbours are also useful) in a 3-d array of processors, where each

processor has 6 direct links to its nearest neighbours. The real challenge in this

area is therefore more the implementation of a fast, reliable and cheap link than

the development of any clever routing strategy.

In APE100 and APEmille, links use large, parallel and synchronous data

paths. Data words are injected at the transmitting end of the line following a

rising transition of the clock and are strobed into the receiving end of the line

at the next rising edge of the clock. This works if

Tt < Tclock (1)

�Tclock << Tclock (2)

where Tt is the travel time over the physical link, Tclock is the clock period and

�Tclock is the phase spread between (nominally aligned) clock signals at various
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places in the machine. The conditions are met in APEmille, where Tclock =

30ns, Tt ' 10ns and �Tclock ' 4ns, while they become clearly unrealistic for

frequencies of ' 200Mhz.

More advanced (high bandwidth) link technologies have recently become

available, in which data and timing information are both encoded on the physical

link, so asynchronous operation is possible. In the bandwidth range relevant for

us, we have considered three di�erent options:

� Myrinet-like links. The physical layer of the Myrinet interconnect uses

low swing single-ended signalling. One byte is encoded onto ten signal

lines, carrying also timing information. The full duplex link uses two

such busses. The present generation Myrinet link has a bandwidth of 160

Mbytes/sec (using both edges of an 80 Mhz clock), while a new genera-

tion (Myrinet-2000, 320 Mbytes/sec) is under test. The main advantage

of Myrinet links is that they pack a lot of bandwidth while keeping oper-

ating frequency low. Board layout details, connectors and cables are also

very well tested. We are informally discussing with Myricom the possi-

bility to use this link for apeNEXT. Myricom have agreed to allow us

to use the link level (SAN-port) circuitry for their latest Myrinet chips

(Myrinet 2000) as a basis for the apeNEXT links. Under a suitable

non-redistribution agreement, Myricom will make available to the collab-

oration the layout of the basic cells, along with their Verilog models.

� LVDS based links. The Low Voltage Di�erential Signalling (LVDS)

technology is now widely used in many telecom and network technologies,

like the Scalable Coherent Interface (SCI). LVDS is designed to work up to

' 622MHz. Several redundant encoding schemes (e.g., 8 bits into 10 bits)

have been proposed. LVDS cells are readily available from several silicon

vendors. New generations FPGA chips have been announced including

LVDS options. Work is in progress to test LVDS links, as described later

in this document.

� High speed proprietary links. Several silicon houses (e.g., Texas In-

struments (TI), National Semiconductor(NSC), LSI Logic) have devel-

oped very high speed proprietary links, aimed at the Gb Ethernet, Fiber-

Channel, In�ni-Band markets. The typical bandwidth is higher than 1

Gbit/s. Complete encoding-decoding black-boxes are usually available.

This option has two main drawbacks: it makes the whole project depen-

dent on a speci�c silicon house, and requires very careful layout of the

printed circuits and proper choices of cables, connectors and the like.

Basic �gures of the three options are compared in table 9, where we use for

the LVDS case a more conservative frequency of 400 MHz.
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Technology Frequency Pins Bandwidth Power Dissipation

Myrinet 160 Mhz 20 320 Mbyte/s 300 mWatt

LVDS 400 Mhz 40 400 Mbyte/s 200 mWatt

SerDes(TI) 1.24 Ghz 10 400 Mbyte/s 400 mWatt

NSC DS90CR483/484 784 MHz 18 672 Mbyte/s 1500 mWatt

Table 9: Basic �gures for several link technologies. All �gures refer to full duplex

links. An 8 bit into 10 bit encoding has been assumed for the LVDS case.

An important issue is the reliability of the network, usually measured in

BERR (average number of errors for transmitted bit). If we require fault-less

operation of a large machine for one day (say, 2000 links active for 50 % of the

time), we need a very low value of BERR ' 10�17. For comparison's sake,

measured stable operation of an APEmille machine with 250 nodes for periods

of a few days implies BERR � 10�15.

Machine reliability greatly improves if the network is able to recover from

network errors by re-trying a failed communication (this impacts on link latency,

but the impact can be made low with some care). For instance a comfortable

BERR ' 10�12 implies that one communication must be retried on the machine

every second.

The above discussed feature however requires some degree of non asyn-

chronous operations, with important technological implications. Regardless of

the technological choice made for the processor, we think that no real advan-

tage is gained by departing from the Single Instruction Multiple Data (SIMD)

or Single Program Multiple Data (SPMD) programming style used in previ-

ous generation APE machines. At the hardware level, APE processors of all

previous generations have been hardware-synchronized with an accuracy of a

fraction of clock cycle. Although logically very neat, this is rapidly becoming

impossible, for clock frequencies higher than 100 Mhz and across physical scales

of several meters. We consider an approach in which independent processors,

while running at the same frequency, are only loosely synchronized. Logical

synchronization will have to be enforced by some form of software-controlled

barrier.

5.4 O�-the-shelf processors

In this section, we brie
y consider of-the-shelf processors as a potential building

block for the computational core of apeNEXT. With one notable exception
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(see later), we choose to consider only the option of using commercially available

boards (in other word, if we decide to use a commercially available option, we

want to drop altogether any hardware development not involving the network).

In the following section we will compare the relative merits of o�-the-shelf versus

custom processors.

Standard o�-the-shelf processors have increased in performance by more than

one order of magnitude in the last 8-10 years, with an even more remarkable

improvement in the eÆciency of 
oating point computations. Standard PC

boards using o�-the-shelf processors have been used for small scale LGT simu-

lations. The relevant codes are written in familiar programming languages, like

C (or C++) or Fortran. EÆcencies are limited by bottlenecks in memory access

as soon as the data base involved in the computation exceeds the cache size

(which is the typical situation in realistic LGT simulations). These e�ects are

discussed in more detail in Appendix D. Here we only quote the main conclusion

that measured eÆciencies on a Pentium II processor running at 450 Mhz are of

the order of 30%, for real-life production programs (running on just one node,

i.e., with no communication overheads) [14].

A detailed discussion of the expected technical road-maps for o�-the-shelf

processors in the next few years in general terms would exceed the scope of this

document. Instead, we discuss the features of a typical high end microprocessor,

that might be used today and apply usual scaling laws. For this purpose, we

(rather arbitrarily) take the AMD Athlon. A number of features relevant for

LGT simulations are shown in table 10.

Clock frequency 600 - 1000 Mhz

F. point ops (single precision) 4 per clock cycle

F. point ops (double precision) 1.6 per clock cycle

F. point latency 15 clock cycles

L1 Data Cache 64 Kbyte

Data bandwidth to L2 cache 1.6 Gbyte/sec

Sustained LGT performance 360 M
ops

Power consumption (750 Mhz) 35 W

Retail price (600 Mhz) 200 Euro

Retail price (750 Mhz) 375 Euro

Retail price (800 Mhz) 500 Euro

Table 10: Features of the AMD Athlon processor relevant for LGT simulations.

Sustained performance is estimated under the assumptions discussed in the text.

In the rest of the discussion, we consider the version of the Athlon running

at 750 Mhz. Indeed, Fig. 1 shows that for higher frequency, power dissipation
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increases faster than linearly.

Figure 1: Power consumption (W ) of the AMD Athlon processor as a function

of the clock frequency (MHz) [15].

If we assume an eÆciency comparable to the one measured on Pentium

systems, we expect a sustained LGT performance of ' 360Mflops per proces-

sor. As discussed in appendix D, we can probably use dual-processor mother-

boards without jeopardizing eÆciency (a quad-processor system would saturate

the maximal theoretical bandwidth of 1.6 Gbyte/sec to access a memory bank

working at 200 Mhz assuming our usual value of R ' 4).

In summary, a high end PC-like node should be able to sustain a performance

of ' 700Mflops running LGT codes in double precision. We can take this as

our basic building block, with just a few relevant �gures summarized in table 11

This nodes needs a sustained interface to neighbour nodes in the three di-

rections of the lattice grid with a bandwidth of ' 200Mbytes=sec.
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Sustained performance 700 M
ops

Power dissipation 90 Watt

Tag price 1500 Euro

Table 11: Basic �gures for a PC-based node of an LGT engine, using cur-

rently available o�-the-shelf hardware. Price estimates are made at current

retail prices. They include 512 Mbyte main memory. No LGT networking or

infrastruture is considered.

In conclusion, a system delivering 1 T
ops sustained LGT performance

would cost more than 2.2 MEuro in processors only, and dissipate more than 130

KW power. We will discuss the implications of these numbers in the following

section.

5.5 The Crusoe architecture

Very recently a new processor architecture (known as the Crusoe) has been pro-

posed by Transmeta Corporation. The Crusoe is advertized as as a streamlined

(hence very low consumption) processor, optimized for laptops or other mobile

computers. The Crusoe has a very simple architecture, that, when used behind

a core-level software environment, emulates the Intel X86 architecture. From

our point of view, it is more relevant that thearchitecture of the Crusoe is ex-

tremely similar to the combination of the processing chips used in APEmille.

Basically, the Crusoe core is a micro-coded system in which several functional

units operate concurrently on data coming from a medium-size register �le (see

�g. 2). The chip has also a data instruction cache, as well as two di�erent

memory interfaces.

A high-end implementation of the Crusoe (advertised as available from Sum-

mer 2000) is called the TM5400. It runs at 500 (maybe 700) Mhz and dissipates

about 2.5 W, when running at full speed.

At present, no Crusoe-based boards are available. It is likely that the �rst

commercial products using Crusoe processors will be laptop machines, that

obviously do not meet our requirements. We have therefore to consider the

option of building a Crusoe-based apeNEXT processing board.

The main advantages of this choice are basically summarized by saying that

we would be using an architecture very similar to APE, while being spared the

burden of designing our own processor.

We have contacted Trans-Meta to explore this option. They stated that:
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Figure 2: The Crusoe architecture (adapted from [16].

� They are not ready to provide critical details of the internal architecture

(for instance, no information was provided on how many 
oating point

operations can be executed at each clock cycle).

� SuÆcient details of the VLIW core will not be given. Indeed Trans-Meta

attitude is that all programming for the Crusoe must be done at the level

of the Intel architecture, and must be translated with their proprietary

software.

With these pieces of information available and considering also that:

� It is not clear whether chips can be procured at an early enough stage of

the project.

� It is not obvious how fragile the whole Crusoe endevour is.

we think that the present situation does not suggest to base a new project on

Crusoe. Of course, we will keep a close watch on any related development.

6 Custom or o�-the-shelf processor

Previous generation LGT projects have used either custom processors, or sub-

stantial enhancements to standard processor architectures or processors devel-

oped for niche applications. No big project has been based on standard o�-

the-shelf processors sofar. Today, a decision to follow the same path is not as

obvious as it has been in the past, since o�-the-shelf processors have increased

in performance by more than one order of magnitude in the last 8-10 years, with
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a remarkable and even more relevant improvement in the eÆciency of 
oating

point computations.

In table 12 we compare a few numbers relevant for APEmille, for the PC-

based solution discussed in the previous section and for a custom-based apeNEXT

architecture (in this case, we use several tentative numbers discussed in early

sections).

|- APEmille apeNEXT: PC-based apeNEXT: custom

Peak performance 500 M
ops 1200 M
ops 1600 M
ops

Sust. performance 250 M
ops 360 M
ops 800 M
ops

Power Dissipation 1.5 W 35 W 3.0 W

Table 12: Comparison of several key �gures for APEmille processors and possi-

ble options for apeNEXT. We assume that a next generation custom processor

has the same eÆciency as APEmille.

No clear cut best choice emerges from these numbers. In general, we see

advantages both in custom architectures and in PC-based architectures:

We believe that a custom architecture is superior for very large (� 500nodes)

systems for the following reasons:

� lower power consumption by one order of magnitude.

� signi�cantly more compact mechanical design.

� better scalability once the basic units are operating (reliability and soft-

ware issues of large systems).

� easier interfacing with the necessary custom remote communication net-

work and the host system.

� better control of technological aspects and less dependence on changing

commercial trends during the realization of the project.

On the other hand, we see several advantages stemming from the use of

PC-derived systems for smaller machines:

� limited hardware development e�ort.

� standard software is readily available for major parts of the compiler and

the operating system.
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� short lead time to commission a prototype system.

We see at this point the need to make a clear decision between the two

options: we decide to focus on the development of a LGT architecture based

on an APE-like custom processing nodes, whose architecture is described in the

next sections. We base our decision on the following points:

� we want to focus our project onto machines with very large performance.

As explained earlier on, we will have to put together several machines to

really arrive at a VERY LARGE scale.

� we think to be able to re-scale and re-use a large wealth of building blocks

from APEmille, reducing the design time.

� We think that the commissioning of a very large PC-based system (involv-

ing several thousand PC's all over the collaboration) is a huge (and new

for us) project in terms of hardware (thermal and power management)

and software (control of a large network) issues for which we have no real

background.

We obviously think that a PC-based system is still a viable alternative (dis-

cussed at some length in the preliminary proposal) for small or medium-scale

systems. At this point in time, we do not consider however the development

of such a PC-based cluster as a priority for the apeNEXT project. We are

however willing to collaborate with any such project, making any apeNEXT-

proper development that might be useful for a PC-based LGT cluster readily

available for such purpose. To this end, two points are most important:

� We plan to design the network processor, supporting LGT-optimized point-

to-point communication in such a way that it can be easily interfaced to

a PC (say across a PCI interface). See the section on the network archi-

tecture for more details on this point.

� We start from the beginning the development of a programming envi-

ronment that allows easy porting between PC-clusters and apeNEXT

systems.

7 Architecture Outline

In this section, we outline an architecture, leading to standalone apeNEXT

systems scalable from about 100 G
ops to about 6 T
ops peak performance.
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Just one such high-end machine would o�er a ten-fold increase in peak per-

formance with respect to currently available systems. Several (5 to 10) high-end

machines, working together with a comparatively larger number of low-end sys-

tems, would allow to complete the physics program outlined in previous para-

graphs.

We propose the following structure:

� a three dimensional array of processing nodes, linked together by nearest-

neighbour links. Each node is a complete and independent processor. All

nodes execute the same program and are loosely synchronized, i.e., they are

started at approximately the same time and proceed at approximately the

same pace. They synchronize when requested by the logical consistency

of the program (e.g., before exchanging data).

� Remote communications use FIFO-based weakly asynchronous connec-

tions between neighbouring nodes. The SIMD/SPMD programming style

a l�a APE does not require complex handshaking protocols, since trans-

mitting nodes may assume that the receiving partner is always ready to

receive the incoming message.

This simple mechanism brings several architectural advantages:

1. It allows to use for the remote communications a programming style

which is very similar to APE100/APEmille. The latter has the very

convenient feature that no explicit distinction between local and re-

mote memory accesses is required when coding a program.

2. This programming style can be easily modi�ed to allow hidden data

transfers (data are moved on the links while the processing node is

performing calculations).

3. It drastically simpli�es the global hardware synchronization logic of

the system.

� The communication interface is in principle an independent component.

As discussed, the communication interface is conceptually based on FIFOs,

allowing "elastic" connections between nodes. This novel feature has to

be carefully simulated, but no serious problem is anticipated here. We

need a fast, yet cheap and reliable4 data-link. Using � ' 8, we need links

of 400Mbyte=sec. As discussed in the section on technology, two or three

di�erent solutions are available.

4Note that due to the asynchronous operation of the machine, requirements on the bit-error

rate of the communication system are less demanding than in previous APE generations, since

it allows for repetition of transfers with minor performance loss.
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As discussed in the previous section, we focus our project on an implementa-

tion of the above outlined architecture based on a closely packed array of custom

processors. We have in mind an implementation allowing to build systems of

between about 1000 to about 4000 processors, along the following lines:

� Each node is based on a VLSI processor running at about 200 Mhz clock.

The processor merges the functions of the control (T1000) and 
oating-

point (J1000) processors of APEmille on a single chip. Each node has a

private memory bank, based on commodity chips. Memory size per node

is likely to be in the range 256 Mbyte - 1 Gbyte per node. The actual

choice may be heavily a�ected by cost factors. The basic 
oating point

instruction is the complex normal operation, so peak performance is 1.6

G
ops (double precision). As already remarked, this requires a memory

bandwidth of 3.2 Gbyte/sec (R = 4). We are studying the possibility to

increase performance by factors 2 : : : 4, by using some form of super-scalar

or vector processing, in which several normal operations are performed

concurrently.

� A typical large system has between 8�8�16 = 1024 and 16�16�16 = 4096

nodes. We assemble nodes on processing boards, similar to APEmille.

Each processor is more compact than in previous generations, and glue

logic is almost completely absent.

One key technological advantage of this implementation is compactness.

We expect to place from 10 to 30 processors per board. The envisaged

hardware structure of the machine is described in a later section.

� The node (and the network) should support not only data transfers be-

tween memory and register (as available on APE100 and APEmille), but

also register to register. This can be used to reduce bandwidth requests

by splitting a complex computation on more nodes, each node using local

data as much as possible, as remarked earlier.

� A host system analogous to the one used in APEmille is a possible choice

for the new machine. Based on networked Linux PC's and the CPCI bus,

it is mechanically compact and reliable. Each PC will be in charge of

several boards. The actual number of boards connected to each PC is

dictated by the bandwidth available on the PCI bus to move data from

APE to disk and vice-versa. For the sake of de�niteness, assume a system

distributed on approximately 100 boards, with a total bandwidth of 2

Gbytes/sec (that is 20 Mbytes/sec per board). In this case, up to 4 boards

can be handled by present generation CPCI CPU's. Higher performance

PCI busses (double size and/or double speed) may allow to increase the

number of boards connected to each PC. The host PC's will be networked

with the most appropriate technology available in due time.
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� We plan to take advantage of all handles o�ered by the non fully syn-

cronous structure of the machine to relax the requirements and to simplify

the structure of the host to apeNEXT interface.

Basically we will hook the interface to just one or two nodes belonging

to each apeNEXT board. (This can be done conveniently by connect-

ing to the corresponding network interface). All complex patterns of in-

put/output data movements, for instance relevant to a write onto disk of

a \slice" of apeNEXT processors are best performed by assembling the

data words onto the input/output nodes under program control, and then

issuing a single data transfer to disk.

We can load executable programs in a similar way, by �rst moving the

code to the input/output nodes and then having a \loader program" to

move the data onto the whole array.

We need a lower level system able to access all nodes independently even

if the neighbouring nodes do not work corectly. This system is needed

for debugging and test purposes and (for instance) to start the \loader".

Speed is not relevant in this case, so well tested standard systems (such

as the JTAG interface) can be freely used.

� We note that it is a relatively easy task to design the (fully self-contained)

processing node(s) in such a way that they can be connected to a standard

PCI desk-top PC. This possibility is very appealing for program debugging

and small scale application. We plan to pursue this design characteristic.

In the following sections, we describe in more details some key components

of our new system.

8 Architecture of the Custom node

In this section we present the architecture of a simple custom node for apeNEXT.

The main idea guiding our design has been that of re-using bits and pieces of

APEmille as long as possible, while re-scaling in performance as much as made

available by technology improvements. We use this guidelines to help shorten

the design cycle.

The custom node on which a large scale apeNEXT system is based is called

J&T, since it combines the functionalities provided in APEmille by the con-

trol processor (T1000) and the mathematical processor (J1000). The combined

processor shares just one memory bank.

A basic block diagram of the architecture is shown in �g. 3. The picture

does not cover in details the memory and network interface. These points will
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be discusse later on. J&T is centered around the register �le, whose structure
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Figure 3: Architectural block diagram of J&T

is the same as the one used in APEmille. Data are transferred from memory

to register �le (and back) through a bi-directional port. Data available on the

register �le can be operated upon in just a few ways:

� Data words can be fed to the mathematical processor (the set of three units

within the red dashed frame). The latter contains a 
oating-point data-

path (Floating-point Building Block, FBB), an integer arithmetic unit

(Integer Building Block, IBB) and a further unit providing �rst approx-

imations of some useful mathematical functions, such as
p
x; 1=x; expx.

This block is known as a Look-Up-Table Building Block (LBB) in APE

jargon. Results of the mathematical block are written back to the register

�le (for later re-use or store onto the memory).

� Data can be moved to the Address Generation Unit (AGU), where a mem-

ory address or a branch-address can be computed out of two register-

operands and one immediate-operand (the displacement). New (data or

branch) addresses are stored in appropriate registers to be used at the

next memory reference or branch.
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� Logical tests can be evaluated on results computed from the mathemat-

ical processor. The outcome of such tests goes onto a stack where more

complex logical conditions can be evaluated. The top of the stack is used

to control program 
ow by acting on the program-counter circuitry (cor-

responding to if (...) then in high level programs) or to block write

operations onto memory or register �le (where (...) clauses in APE-like

high level programs).

The processor is controlled by a relatively large program word (called the Micro-

code Word) directly controlling the various devices in the node. (Almost) no

instruction decoding is performed on chip. This scheme has been succesfully

used in the node processors of both APE100 and APEmille. A word size of 128

bits is large enough to control the system.

In the following, we describe in more details several key units of the proces-

sor.

8.1 The memory interface and the network interface

In this section we describe the memory and network interface, sketched as mem-

ory grey box in �g. 3. A basic structure of this subsystem is shown in �g 4.

The diagram shows several paths:

� there is a direct data path from the Register File to the physical memory

interface (and vice versa), supporting normal memory access.

� Data from memory can be also fed to the Network Interface (and eventu-

ally routed to a remote node). Conversely, data arriving from the Network

(from a remote node) can be routed to the Register File.

� Data words may be sent to the network from the register �le. This is a

novel feature, allowing registe-to-register remote communications. This

feature reduces remote bandwidth requests in some cases (notably in the

evaluation of the Dirac operator).

� The network interface receives data from the memory (or the registers)

and route it to the appropriate destination through one of the six links

(Details on the network itself will be provided later on).

In �g. 5 we further expand the Interface to physical memory. We see that

memory is divided into cache memory and external memory:
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Figure 4: Top level block diagram of the memory and network interface.

� external memory. External memory implements the large memory bank

of the node. As discussed in the section on technologies, we may use (for

instance) DDR 1 Gbit memory chips. We have several options of memory

bus width and bank size satisfying bandwidth constraints (see table 7). We

want to leave these options open at this point in time. For this reason,

�gure 5 still has a grey box. This grey box contains the actual state

machine controlling memory access, memory correction circuitry, refresh

control circuitry and any other ancillary logic. The box will be designed in

detail at a later stage of the project, after the actual memory technology

has been selected. For the moment, we model the block by a simple

interface in which data words coming from the memory are validated by

an ad-hoc signal.

� cache memory A limited amount of on chip memory is needed in the

node. Fast access on-chip memory will be used to store control variables

(i.e. loop counters) and memory pointers. These variables were stored
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Figure 5: A lower level view of the memory system.

in the data-memory block of the control processor (T1000) in APEmille.

Indeed, these variables have very irregular access patterns and very short

access bursts. The use of relatively long-latency dynamic memory would

adversely impact performance. On-chip memory does not need to be very

large, of the order of 1K data words. Note that, in spite of the name, this

is not a true hardware controlled cache system, since the decision to store

variables on-board or otherwise is statically made at compile time (one

very simple strategy would be to store on-board all non vector integer

quantities de�ned by a program).

In any case, as seen by the processor, the memory interface has a word-width

of 128 bits (one complex double precision number) and provides one new word

at each clock cycle in burst mode. Addressing is done on 64-bit boundaries (so

real and integer variables can be stored eÆciently).

8.2 The instruction cache

Actual LGT simulations typically spend an extremely large fraction of the run-

ning time in just a few critical loops. For instance, a full-fermion hybrid Monte

Carlo code spends nearly 95% of the time in the kernel used to compute the

value of the Dirac operator on the fermion �elds. Under these conditions, an

instruction-cache system should have very large eÆciency. We may exploit this
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feature by storing node programs in the same memory bank as data, with ob-

vious advantages in terms of pin-count, real-estate reduction and cost savings.

We consider a control word (micro-code word) of 128 bits, equal to the word

size that can be fetched from memory at each clock cycle. We may modify the

memory interface as shown in �g 11.
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Figure 6: The instruction cache and the program look-ahead system.

Consider for the moment just the Instruction-Fifo. The memory controller

(not shown in the picture) continously looks-ahead and prefetches instructions

from the memory, at all machine cycles in which data-memory transactions

are not in progress. Under the fully pessimistic assumption that all program

cycles involve data-memory accesses, this mechanism reduces performance by

a factor � 2. Now consider the Instruction cache. The instruction cache is

loaded (mostly simply, under program control; the program writer may advise

the compiler through appropriate directives that some routine or do loop is a

critical kernel to be loaded onto-cache) the �rst time the critical loop is executed.
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The program then completes all following loops fetching instructions from the

cache without incurring in any time penalty. The expected eÆciency (�) is (f

is the fraction of cached program instructions):

� =
1

f + 2� (1� f)
(3)

If we expect to cache 90% of all used instruction (a rather pessimistic value) we

may still expect 90% program eÆciency.

The size of the cache needed to accomodate the computational kernels is an

important parameter. We have estimated this value by analyzing several LGT

kernels used in TAO and TAOmille physics programs. Results are shown in

table 13. For each program, we list the size of the complete routine (labelled

"complete"), the size of the critical kernel that could be "cut and pasted" im-

mediately from the routine itself (labelled "medium"), and the size to which the

critical routine could be shrinked with some re-programming e�ort ("basic").

For each routine we also record the minimum number of J1000 registers neces-

sary to optimally schedule the program. This piece of information will be used

later on. Note that no e�ort was made when writing these programs to keep

kernel min. registers basic medium complete

Plaquette 166 2078 4139 6753

Dirac 194 736 1985 1985

Wilson 200 8989 11481 20000

LBE 130 - 2497 3467

Table 13: Code length (in machine cycles) and physical register usage of

some LGT kernels running on APE100 and APEmille. The entries \complete,

medium, basic" refer to the lenght of the complete routine, the lenght of the

more time consuming loop and to the length to which the critical loop could be

reduced with minor adjustments.

code-size small. Inspection of the table shows that a cache size of the order of

16 Kwords is large enough.

8.3 The register �le

The register �le has the same architecture as in APEmille. The register �le

has three read-only ports, one write-only port and one bi-directional port. The

read-only ports are used to feed data to the mathematical processor, while the

write-only port stores data from the mathematical processor onto the RF. The
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bi-directional port is used for memory access. All ports can be used at each

clock cycle (�ve independent adresses are needed).

The word size of the processor is 64 bits, and complex numbers are stored

as pair of (adjacent) registers.

The depth of the register �le a�ects the performance of the node. If enough

registers are not available, temporary results cannot be hold on-register. Mem-

ory bandwidth requirements increase and program eÆciency decreases. In

APEmille, 512 registers (or 256 register pairs) were used. Table 13 lists the

number of registers used by critical LGT kernels programmed in TAO and com-

piled for APEmille. As we see, less than 256 are needed in all programs. We

plan to design a register �le of the same size as APEmille (512 lines). If we �nd

out that such a large system does not work at the required speed, we know that

the size can be halved without serious problems.

8.4 The mathematical processor

The computing engine contained in J&T performs three tasks:

1. it performs the 
oating-point (FP) (and, less frequently, integer) arith-

metic operations heavily used in any scienti�c code. This is of course the

most important functionality of the computing engine. All design trade-

o�s must provide the highest possible peak (and sustained) performance

for this task. As already discussed, we will use the IEEE double precision

format only. The system will be heavily optimized for the arithmetics of

complex-valued numbers.

2. it computes �rst approximations of several important special functions (as

already remarked, these functionalities are called LUT operations in APE

jargon).

3. it performs all (mostly integer) arithmetic and logic operations needed

to compute memory addresses. This task was carried out in a separate

chip in APEmille, with dedicated hardware. We plan to share just one

processor for this task and the previous one (and also for the fourth task,

described below). As shown elsewhere, the price paid by this optimization

in terms of performance is small.

4. it performs all arithmetic and logic operations supporting the evaluation

of branch conditions. All considerations made before about addressing

also apply here.
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We plan, for obvious reasons, to re-use to a large extent the logical design

and implementation of the arithmetic block used in APEmille (called FILU for

Floating - Integer - Logic Unit). This goal is most easily reached by extracting

from FILU the double-precision FP data path, the integer data path and the

LUT circuitry, and building more complex operators as combinations of these

building blocks. We recall that the FP data path performs the normal FP

operation (d = a � b + c) and conversions between FP and integer numbers,

while the integer data path performs standard arithmetic and logic operations

in integer format. We call these basic data paths the FBB (Floating Building

Block), the IBB (Integer building Block) and the LBB (LUT Building Block).

Experience with the development of APEmille has taught us that a minor

e�ort is needed to �nalize the design of the IBB and LBB. Here we consider in

details only the FBB. The architecture that we consider is shown in �g. 7. It

uses data stored in the RF, that contains 256 register pairs. The two elements of

the pair share the same address on each of the three ports. A complex operand

has its real and imaginary parts stored on the same word of both registers,

while a real operand sits on any location of either block. A vector operand

�nally is made up of two independent real values, stored in the same way as a

complex operand. Vector operations can be e�ectively used in LGT codes for

the generation of random numbers.

Ar Cr
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Figure 7: Block diagram of the 
oating point data-path (FBB) within the math-

ematical processor.
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The FBB (see �g. 7) uses four basic 
oating point blocks, wired in such a

way as to:

� compute the complex-valued version of the normal operation:

d:re = a:re� b:re� a:im� b:im+ c:re (4)

d:im = a:re� b:im+ a:im� b:re+ c:im (5)

� compute one real-valued normal operation on operands coming from any

element of any register.

� compute two real-valued normal operations on ordered operand pairs sit-

ting on the right and left register banks respectively (vector mode).

Some basic �gures of this architecture are collected in table 14. Control of

the processor requires 5 bits in the microcode word and uses 4 RF ports. In

total 8� 4 + 5 = 37 control bits are needed.

type performance operands in RF

complex 1600 MFlops 256

real 400 MFlops 512

real vect. 800 M
ops 256

integer 200 Mips 512

int. vect. 400 Mips 256

Table 14: Basic parameters of the mathematical processor.

8.5 Performance Estimates

We have worked out some preliminary (but accurate) forecasts of the expected

eÆciency of the processor outlined in the previous sub-sections on a few com-

putationally intensive kernels. The methodology used to reach these results is

explained in appendix C. Our results are shown in table 15 for two versions of the

kernel of the Dirac operator and for the main kernel of the Lattice Boltzmann

Equation (LBE) solver.

The �rst two codes are appropriate for LGT programs, while the last kernel

has been used for the simulation of turbulent 
uid 
ows on APE systems. The

two Dirac kernels refer to a simple program written in TAO (Dirac1) and to an

accurately optimized code written in assembly (Dirac2). We see that in most

cases we do safely better than in APEmille.
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Kernel normals APEmille apeNEXT

Dirac1 336 44 % 45 %

Dirac2 336 58 % 72 %

LBE 870 55 % 60 %

Table 15: Measured performance on APEmille and estimated performance of

J&T on some critical kernels, described in the text.

We are still working to make our prediction more accurate and to test the

eÆciency of the processor on a larger set of computational kernels.

8.6 Implementation issues

In the following table we estimate the gate count of the largest logical blocks

used in J&T. In the table we foresee a 0:18� CMOS technology, as discussed

in a previous section. Most values are evaluated by using appropriately scaled

corresponding �gures for APEmille and allowing large safety margins.

what APEmille scale Factor apeNEXT (gates) apeNEXT(mm2)

Reg File 200 K 2 400K 5.0

Fl. Point. 100 K 2.5 250K 3.7

Intf. 30 K 2 60K 1.0

Data-cache 0 NA 1K � 128b 4.4

Prog-cache 0 NA 16K � 128b 34

Total 330 K 4.5 + cache 700K + caches 48

Table 16: Gate count and area estimate for the main components of the

apeNEXT custom processor

Power dissipation for this system is less than 2.5 W at 200 Mhz (assuming

that about 30% of the gates switch at each clock cycle). This processor �ts into

a reasonably small die and has a relatively small pin count.

Design of the processing node has already started. Details are given in

appendix B.
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9 The interconnection Network

The interconnection network is very sharply tailored to the needs of LGT sim-

ulations. The networks supports rigid data transfers between:

� nearest neighbour nodes in the positive and negative direction of the three

axis (single hops)

� next to nearest nodes, whose node-coordinate di�er by +-1 in two of the

three dimensions. (double hops).

More formally, the network performs rigid shifts of the mesh of processors onto

itself:

(x; y; z)! (x+�x; y +�y; z +�z) (6)

where (x; y; z) labels the coordinates of each processor , (�x;�y;�z) are con-

stant for all processors and j�i = 1j in no more than two terms.

Each link has a target bandwidth of at least 300 Mbytes/sec per link. Each

node needs six links to support all the above described communication patterns.

From the point of view of system architecture the network is logically syn-

chronous and support SIMD program 
ows, although at the layer of the physical

link, no (wall-clock) time synchronization is needed.

This de�nition can be made more precise in the following way:

� Consider a SIMD program started on all nodes of the machine. Each and

all nodes, while executing the program start a well de�ned sequence of

remote communications. The sequence is the same for all nodes.

� we tag all remote communications by the following set of attributes:

(�x;�y;�z; S;N) (7)

where the �'s were de�ned before, S is the size of the data packet associ-

ated to the communication and N is an identi�er that labels all communi-

cations issued by each program (in the following, we call N the message-

tag). N is initialized at 0, when starting the program and is incremented

every time a new communication is started. In other words, N de�nes

an ordering of all communications inside the program. Note that all at-

tributes of each remote communication are equal on all nodes.

� The network interface of each node accepts data bound to a remote node

and tries to send it to destination. Note that although all nodes necessarily
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send the same sequence of packets, the (wall-clock) time at which a new

data transfer starts may di�er slightly among nodes. The following simple

protocol controls the ensuing traÆc:

1. Each network interface tries to start a remote communication origi-

nated from its node and identi�ed by tag N only when it has received

the data belonging to tag N � 1.

2. Each network interface refuses to accept a data packet coming from a

di�erent node and tagged by N unless it has been already instructed

by its own node to start transfering N .

3. Each network interface delivers incoming data in strict ascending N

order.

This protocol is needed to make sure that all messsages reach destination

in the appropriate ordering. As we see, very simple rules are needed

to reach this goal under the assumpion that programs follow the SIMD

paradigm.

Note that the network can perform several useful sanity checks:

� Once a node instructs the network to send a data-packet to a given desti-

nation, the network implicitely knows which packets it should expect on

its links, with a given tag (for instance if a data-packet must be routed

to south - east, then data with the same tag is expected from west for

delivery at the local node and from north to be routed to east. The

network interface can check that this is actually the case.

� The network can also check that the right sequence of tags is received

within a (programmable) time-out delay.

� The network can further check that the data-sizes of all messages associ-

ated to a given tag are equal.

All these checks are important to help debug either ill-functioning hardware or

wrong programs.

Error rates in the network are an important issue. In plain fact, we do not

know the Bit Error Rate (BERR) that we may expected on fast links. We are

only able to quote the upper limit on the BERR implied by the safe operation

of the APEmille prototype (10�15). The BERR value needed for an error free

apeNEXT operation on runs lasting a few days is an embarassingly low 10�17.

For this reason, we have decided to stay on the safe side and to design a network

partially able to recover from errors. If we are able to recover from errors a much
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Figure 8: Architectural block diagram of the interconnection network.

more manageable picture emerges: for instance a more modest BERR ' 10�12

implies the failure of one transmission burst every second on the whole machine.

We are considering a re-try mechanism, shown in �gure 9 that has only a

moderate impact on communication latency:

� We divide each data block travelling onto a remote link in relatively short

bursts (say, 16 bytes) followed by a cyclic-redundancy-check (CRC).

� Data bursts are sent from the transmitting nodes, followed by their CRC.

A small number of bursts is kept on the transmitting node, stored inside

a FIFO queue, also after transmission.

� The receiving end of the link checks the CRC of each burst as it arrives.

If the check is succesfull it delivers received data. The latency implied by
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Figure 9: Low-latency re-try mechanism for the apeNEXT links.

this procedure is not longer that the size of each burst.

� If an error is detected, the receiving end requests the corrupted burst to

be re-transmitted. This is possible, since relevant data is still available on

the transmitting side of the link.

We plan to �nalize most of the high level details of the network using a

black box model of the physical link layer. In this way we can complete most of

the design even before selecting the actual link technology. In parallel, we are

already carring out tests on some of the link technologies.

10 Machine assembly and partitioning

We plan to assemble a certain number of APEmille processors on a printed

circuit board (PCB). Preliminary evaluations suggest that 16 processors can be

placed on one PCB, of roughly the same size as the one used for APEmille.

For comparison, note that one APEmille PCB houses 8 processors. In this case

however a large (almost 50%) fraction of the real estate is used by the control

processor and ancillary circuitry. If we use PCB's of the same size as APEmille,

we can re-use immediately the mechanical components of the older system.

At this point in time we have two options for the topology of the nodes

belonging to one PCB. The �rst option is a three-dimensional structure with

2�2�4 processors. The second option implies a two-dimensional set-up of 4�4

processors. PCB's are assembled inside a crate. All PCB's inside one crate are

connected to a communication backplane. If we use the mechanical components
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developed for APEmille, we can reasonably house up to 16 PCB's inside one

crate. Larger machines use more crates.

If we use the �rst option for the node topology inside a PCB, we can allocate

onto the backplane all links in two of the three dimensions (say, directions y and

z), building a system of size 4� 8� 8. Communications in the x direction are

implemented via cable links. If we assemble and connect together n crates, we

obtain apeNEXT systems of size (4� n)� 8� 8). This option is very similar

to the one used by APEmille, where systems of size (2� n)� 8� 8 are allowed.

We call this arrangement Option 1A.

It is possible to use the same structure of the PCB as above, wiring however

the unit inside a crate according to a 4 � 4 � 16 topology. In this case large

machines contain (4� n)� (4�m)� 16 nodes. This is option 1B.

In the case that the second option for the PCB is selected, we allocate

all links belonging to one of the spatial directions (say, direction z) onto the

backplane. Links in the x and y directions stemming out of the PCB use cable

links instead. Using this arrangement, systems of size (4 � n) � (4 �m) � 16

can be assembled. This is option 2. Some basic �gures relevant to both options

are collected in table 17.

- Option 1A Option 1B Option 2

number of procs. 16 16 16

Peak PCB perf. 25.6 GFlops 25.6 GFlops 25.6 GFlops

topology 2� 2� 4 2� 2� 4 1� 4� 4

crate topology 2� 8� 8 4� 4� 16 4� 4� 16

Large-systems (2� n)� 8� 8 (4� n)� (4�m)� 16 (4� n)� (4�m)� 16

Remote links (PCB) 40 40 48

Remote links (BP) 32 24 32

Remote links (cables) 8 16 16

Table 17: Basic �gures of three possible apeNEXT machine con�gurations.

In both cases, a large number of signal must be routed on the backplane.

This is a serious but not formidable engineeering problem. Assuming that 20

data lines are needed per link, we have 640 pins carrying data from the PCB

to the backplane (see again table 17). This requires as little as about 17 cm

on the PCB edge, using high-density high-speed matched-impedance connectors

developped by several vendors (see for instance [17]). Of course, special care

must be taken in the design of accurately matched transmission lines, both on

the backplane and on the main PCB.
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As discussed earlier, the backplane must also house a CPCI backplane. This

is made by a straightforward copy the well tested CPCI backplane developed

for APEmille.

We will decide later on in the design phase on the selected topology, using

information from test setups and taking also in consideration the relative merits

of the two solutions from the point of view of physics simulations.

11 Software: The programming environment

The apeNEXT programming environment will be initially based on two main

lines:

� The TAO programming language, extensively used in APE100 and in

APEmille will be supported. This is necessary to allow easy and early

migration of the large set of existing QCD programs on the new machine

This large portfolio of programs is also going to be extremely useful for

test and debugging purposes.

We do not plan to make any substantial improvement to TAO. We will

just modify the back-end section of the TAO compiler, so it produces

apeNEXT assembly codes.

� We plan to develop a C/C++ language compiler for apeNEXT since the

early phases of the project. The language will be a natural evolution of

the GNU-gcc based compiler for APEmille [18] which is currently under

evaluation.

Very few extensions will be added to the standard C syntax, with the goal

of minimising the e�ort for the programmer in learning a new language.

SPMD parallelism will be realized by just a few special constructs, similar

to the ones already present in TAO:

1. the where instruction executes code based on local conditions.

2. the all, none, any keywords in a standard C condition perform

aggregate evaluation of local conditions.

3. Remote communications will be speci�ed by constant pointers.

The compiler will be implemented by porting already available public do-

main compilers (like, for instance, the GNU C/C++ compiler or lcc) with

the needed SPMD extensions in the front-end (the language de�nition)

and all necessary changes in the back-end, to produce the target assem-

bly.
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Note that, by using already available compilers, it will be relatively easy

to implement all SPMD extensions of the language on more traditional

machines (like PC clusters). Conversely, already developed parallel pro-

grams written in C (and following the SIMD/SPMD paradigm) will be

easily ported onto apeNEXT. We regard this possibility as our main

path to build a common programming environment between apeNEXT

and more traditional systems.

We want to push still further the goal of a more general apeNEXT pro-

gramming environment. We plan to merge to some extent the programming

environments based on Tao and on C/C++, and at the same time enhance the

portability of programs between APE systems and more traditional computer

clusters. We plan to work according to the lines described in �gure 10, that

uses for de�niteness the structure of the GNU compiler.

Grammar Def.

Machine Def.

C parser

Asm

Pre-Proc.

Code Gen.

.cc

Int. Rep.

.zzt

Tao Parser

Figure 10: A sketchy view of the internal structure of the GNU compiler, in-

cluding planned extensions for the apeNEXT software environment. Symbols

in magenta are source or executable �les. Symbols in blue are functional blocks.

Synbols in red are apeNEXT speci�c extensions.

The blue boxes in �gure 10 sketchily describe the overall organization of the

standard GNU compilers. There is a front-end block with a con�gurable parser
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that transforms the user code into an internal representatation, based on a tree

representation of the code and symbol tables. The back-end block maps the

internal representation onto assembly code for a speci�c target architecture.

The APE C compiler can be implemented on the basis of existing and con-

�gurable front-ends with minor modi�cations to include the required syntax

extensions for parallel processing. The back-end section must of course be cus-

timized to produces apeNEXT assembly code.

It is also possible to add an additonal parser at front-end level (this is al-

ready done, in the GNU system, for the Fortran compiler). We think to follow

this path to include the TAO parser, suitably modi�ed to generate the GNU

internal representation. Indeed, TAO cannot be easily handled by standard

con�gurable parsers because of its dynamic grammar. In �gure 10 the APE

speci�c extensions are drawn in red.

When the program outlined above is accomplished, we will have a very neat

portable environment in which:

� all powerful optimization techniques of the standard compiler core are

available.

� TAO and C codes can be compiled for a standard computer system (e.g.

a PC).

� C and TAO codes can be compiled for an APE system.

The design and implementation of this open programming environment is a

long term and very high priority goal of our project. It is not going to be easy

or fast. Physics exploitation of apeNEXT in the early phases does not depend

on this environment, since the traditional APE software tools can be used.

At the machine level, we will port to the new architecture and improve the

well-established VLIW code-scheduling and code-compressing tools already used

in APEmille. Some preliminary results on this line are discussed in appendix

C.

12 Software: The operating system

We plan to shape the apeNEXT operating system as a direct evolution of the

APEmille system: the basic idea is that we use as much as possible the services

provided by Linux on the network of host PC's.
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� The apeNEXT operating system must load executable codes on the array

of processing nodes and start execution of the whole system. We remind

that all stages of program compilation and optimization are performed on

the host PC's (or on any other Linux machine).

� The second task performed by the operating system is the support for

input-output operations requested by the executing program. Note here

that these operations use the standard �le systems available on the host

PC's (or, on any networked disk server). Of course, large data transfers,

where high bandwidth is needed, are performed in parallel by all PC's on

local disks. Later on, we will make some additional remarks on this point.

� The third task performed by the operating system is the monitoring and

control of all nodes at a low level. Typical examples include the inspection

and setting of status-registers, the analysis of error conditions, explicit

writes or reads to memory locations.

All functions described above are handled by the APEmille operating system

in a reasonably eÆcient and user-friendly way. Most operations can be easily

moved onto apeNEXT by re-writing only the lowest layer levels of the operating

system, like device drivers or the functions mapping a speci�c operation on a

speci�c node onto the appropriate PC. We expect therefore to be able to put to

work quickly an early version of the system.

An area on which we would like to bring new ideas, not needed however

for the early commissioning of apeNEXT, is some version of a parallel �le

system, where large �eld and propagator con�gurations can be stored in a stan-

dard format. This is an obvious starting point to allow the sharing of QCD

con�gurations among collaborating groups. We see this work as a partial con-

tribution of apeNEXT to the GRID project. Work on this line will be therefore

coordinated with GRID.

13 Design Methodology

In designing the needed VLSI components as well as the overall system, we

want to follow the methodology used in APE100 and APE1000, with a number

of improvements to make it more eÆcient and faster. The main advantage of

this methodology has been shown in APE100 and APEmille: in both cases all

components of the machine were designed "�rst-time-right".

The main ideas behind our methodology are some informal implementation

of "hardware-software co-design" techniques:
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� We base our design on a VHDL model of a large and signi�cant fraction

of the whole system. The model contains all in-house developed systems

as well as all o�-the-shelf components. Initially, the model will be a very

crude approximation to the actual system, gradually incorporating all de-

tails. This reference model is available at all collaboration sites.

� All VLSI (or FPGA based) components of the system are derived with

high quality synthesys tool from the VHDL design. In the (hopefully

rare) cases where some component cannot be synthesized from a VHDL

description, a VHDL model is built anyway, and test vectors for the ac-

tual implementation are derived by the VHDL model. Non-VLSI parts of

the systems (i.e., processing boards) will be modeled in VHDL by their

designers.

� The VHDL model supports a reasonable approximation of the interaction

with the host system (operating system).

� All software developments are immediately tested on the VHDL model.

At an early stage of the design, tests will involve performance estimates

on crudely modelled architectural choices. As the level of details of the

model increases, actual programs, in all their intricacies, will be executed

on the model, giving quick feed-back on any design detail.

As an improvement with respect to APEmille, we will insist on:

� a continuous availability of the model at all collaboration sites, so all

members of the collaboration can easily monitor the e�ects of a design

change made elsewhere. This can be achieved with reasonable e�ort by

keeping a master copy of the model on an AFS cell available from all sites.

� an e�ort to allow access to the model from a basic version of the op-

erating system, so that even the more physics-oriented members of the

collaboration can exercise it.

� a systematic use of blind-test procedures: at all stages of the design phase,

test sequences for any portion of the machine will be prepared and exe-

cuted by someone who has not been directly involved in the design.

Finally, we address the issue of the design of some VLSI blocks that depend

critically on some portion which is either not under our direct control or not

completely de�ned at this stage. Examples of this situation are the details of

the memory system (heavily dependent on the type of memory available at the

time when prototypes are built) for the custom processor, or the actual choice

for the physical layer of the interconnection links. Changes made in memory
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technology during the design lifetime of APEmille have indeed adversely a�ected

that project, as large subsystems within J1000 and T1000 processors had to be

modi�ed to adapt to changing memory speci�cations.

We want to solve these problem by con�ning all details of the memory and

link interfaces in a "grey box", that interacts with the rest of the design with

some simple and rather general data and control path. In this way, a very large

fraction of the design can be �nalized independently, while the interface-speci�c

blocks will be procured (if available from external sources) or designed in detail

at the last moment.

14 Conclusions

This document has described physics requirements and basic architecture of a

next generation LGT computer project. We think that the well-tested SIMD-

SPMD architecture of the previous APE generation is still the best choice for

an LGT-focused high performance engine. At the engineering level, we plan to

use technologies similar to those used in APEmille. We think that this choice

reduces development costs and risks.

In the near future, collaboration between groups active in LGT simulations

will become tighter and tighter. For this reason we plan to work hard on

the development of a software environment allowing easy migration between

apeNEXT and more traditional computers.
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A Ongoing and planned R/D activities

This section contains a sketchy list of ongoing and planned preliminary activi-

ties. A few selected items (which are at a more advanced stage) are covered in

speci�c sections.
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� DESY has already built and succesfully tested a data parallel link of mod-

erately high frequency: 11 signal pairs have been operated at 250 Mhz for

long periods (50 hours) with no errors. Such a system would move 400

Mbyte/sec (plus check bits + signalling) on 22 LVDS pairs. They are now

working to replicate the same system on an APEX FPGA.

� DESY is also working on a second generation FLINK interface, using NSC

DS90CR483 / 484 chips. For Flink purposes, it will give 200 Mbyte/sec.

For apeNEXT, it can be pushed to 112 Mhz (interface frequency) and

48 bits (interface width) corresponding to 672 Mbytes/sec.

� CERN is working on unidirectional multiplexed LVDS and PECL based

link technologies. The aim is to test the very high speed capability of these

technologies on di�erent cables and. Furthermore the link speed will be

optimised to match fast-wide PCI interfaces. The link will be designed so

other users can take bene�t of this PCI to PCI fast connection.

� The second major e�ort at CERN should converge into the emulation of

the switching mechanism of apeNEXT with a moderate to very high

speed interconnections. apeNEXT requires 6 bi-directional links (or 12

unidirectional). This system can be integrated in the next generation of

ALTERA FPGA chips that will have LVDS I/O pins. These chips are a

very good test bed for the links and switching required by the project. How

many links (bi-directional or not) and at what speed remains to be seen,

but again a PCI interface capable to switch on several links is a valuable

project also for other applications. This system may cover (although at

higher costs and higher power consumption) most of the requirements of

the apeNEXT network.

� The basic 
oating point element for a custom processor has been extracted

from the APEmille 
oating point block. Detailed VHDL coding is under

progress in Pisa.

B Preliminary Design of the apeNEXT Node

Work has already started on the design of the architecture of the apeNEXT

node and on preliminary activities tied to the actual hardware implementation.

In this section we brie
y mention activities already in progress and at a fairly

advanced stage. More details are usually found on the relevant www pages of the

APEmille/apeNEXT intranet (http://chimera.roma1.infn.it/intranet).

We are working on the following lines:
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� We have de�ned a preliminary version of the apeNEXT assembly lan-

guage. The de�ned instructions are, in most cases, suitable extensions of

the APEmille assembler. Several new instructions are needed to handle

the di�erent structure of the new machine, especially for memory access.

Although some of the instructions will probably undergo adjustments as

the details of the system are �nalized, we think that most instructions are

reasonably stable.

� We have started to outline the format and size of the microcode word that

controls the processor at each clock cycle. We are currently keeping a few

di�erent versions of the microcode, that we use for performance estima-

tions. See (http://pcape2.pi.infn.it/ fabio/APEnext/instr next.html,

and the next appendix for details.

� We have slightly modi�ed the APEmille shaker program. The shaker,

a key component of the APEmille compilation chain, schedules and com-

pacts assembly instructions, trying to maximize device usage and �lling

of pipeline slots. The shaker can be con�gured for a wide range of archi-

tectures, by writing a con�guration �le. The �le describes how assembly

instructions are mapped on devices and on the microcode word, and the

corresponding timing. We have started to prepare con�guration �les for

our target architecture, using pessimistic guesses for a few parameters, so

we should be able to produce apeNEXT executable code shortly. See

also the next appendix.

� We have started the coding of the VHDL description of the processing

node. Our �rst goal is the completion of a �rst version of the code, in

which most blocks are described at rather high level, or only have very

partial functionalities. As soon as this version is ready, we will start

exercise it with the executable codes produced as described above. We will

then proceed to develop more advanced versions of the model, gradually

incorporating all details of the architecture.

� We have made a preliminary survey of the silicon technologies that might

be used in apeNEXT. We have focused on 0.18 � technologies. These

technologies are now in a rather early stage of development, as far cells,

pads, Synopsys models are concerned. They should reach a rather stable

state in the �rst part of the year 2001. We have obtained design kits for

the 0.18 � processes of UMC (through IMEC) and of ST (through CMP).

We plan to use these design kits early in the design process, to ensure that

all components of the VHDL model can be mapped on silicon within the

required time and area limits.

� We have completed the design of a prototype register �le design, using a

standard cell library available with the UMC technology. Our test design

has the full size required for apeNEXT, namely 2 banks of 256 registers
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each. Each register has 64 bits. We have also added one additional input

and one additional output port, so more complex node architectures can

be considered.The target clock frequency of the design is 200 MHz. We

are now performing the place&route of the design, in collaboration with

IMEC. We are also considering to actually fabricate a test chip, taking

part in a Multi-Project Chip (MPC) run, early in May.

C Performance Estimation for the apeNEXT node

We would like to estimate the performance of apeNEXT node on tipical QCD
program kernel. To evaluate the performance of the node that we are designing

we use the shaker tool, a static assembly instruction scheduler for VLIW ma-

chines, currently also used to generate executable program for APEmille. The

result obtained is a static estimation of the number of machine cycles correp-

sonding to a kernel section of a physics code, used as benchmark.

C.1 The Shaker

The assembly code producted as output by a compiler or written by hand must

be converted into executable code. In tmicro-programmed machines like APE

this means converting each assembler instructions in a micro-program of several

machine cycles. This is done by the program shaker.

The shaker schedules the assembly instructions of a program in order to

optimize resource usage and reduce execution time. In the APE machines we

can exploit as many vertical parallelism slots as the number of hardware pipes

and as many horizontal parallelism slots as the number of devices that can work

in parallel. In order to exploit all kind of parallelism we must keep busy the

pipes and the devices for as many machine cycles as possible.

The shaker schedules the start of an instruction as all the nedeed resources,

e.g. register operands, are available taking care of logical data dependencies of

assembly instructions and hardware constraints.

The shaker uses a con�guration �le which de�nes the �elds of the micro-word,
the resources which are available to be used and the patterns or micro-programs

of each assembly instructions. A tipical con�guration �le contains the following

information:

� �eld name de�nitions and �eld value mnemonics

� �eld location speci�cations
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� micro-word width speci�cation

� micro-program de�nitions

� usable hardware resource speci�cations

A con�guration �le can be de�ned for each architecture that we want to test.

this information is compiled into internal data structures used by the shaker
engine.

The input to the shaker is a �le containing the assembly instructions and

logical dependecies beetween them. The output is a �le containing for each

assembly instruction the cycle at wich it may be scheduled without breaking

logical or hardware dependencies.

C.2 Performance Evaluation

We have de�ned a shaker con�guration �le for the architecture of the apeNEXT

node. Using the output assembly code product by the APEmille compiler or

tipical code written by hand, we mapped it onto the apeNEXT assembly code

supported by the shaker. The result obtained is an estination of the number of

machine cycles needed to execute the program under test.

We used as main benchmark the core of the dirac operator. In table 18

we show the measure of eÆciency of the new apeNEXT node compared with

APEmille. The DiracNext3 program is an assembly program written by hand

and Dirac and Bolzman are assembly code product by the xtc compiler, one of
the available TAO compilers for APEmille. Measured eÆciencies are the same

as in APEmille or better. The last column shows the eÆciency of the same

programs in case that we include a second mathematical unit in the node. In

this case eÆciency drops somewhat, but the sustained performance is still much

larger.

See http://pcape2.pi.infn.it/APE under the link apeNEXT shaker for more
details.

D Performance of LGT kernels on PC's

The theoretical 
oating point performance provided by o�-the-shelf processors

has reached an impressive level during the last years. To understand how eÆ-

cient actual QCD codes perform on a given architecture practical benchmarks
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APEmille apeNEXT apeNEXTII

DiracNext3 58% 72% 48%

Dirac (xtc) 44% 45% 32%

Bolzman (xtc) 55% 60% 42%

Table 18: Expected eÆciency of the apeNEXT processor on several benchmark

kernels.

are usually needed. In particular, the eÆciency of memory access and remote

communications may be critical for the sustained performance.

In order to disentangle for instance the e�ects of the multi-layered memory

hierachy and the processor itself, we have performed a series of preliminary

benchmarks on PC's. They include rather simple tests programs to investigate

characteristic quantities such as the bandwidths for data access at the various

cache levels, latency and throughput of arithmetic pipelines, concurrency of

di�erent functional units and the limits performance increas in case of PC's

with multiple processors.

The measurement of pure data access times as a function of the burst length

is shown in �g. 11 for a Pentium II at 400 MHz. The clear steps illustrate the

di�erent access bandwidths for data residing in di�erent levels of the memory

hierarchy (L1 cache, L2 cache, memory). For data access to L1 cache, the

bandwidth is determined by the throughput of the load and store units of the

processor. For large block sizes the bandwith plateaus at about 70 % of the

theoretical value of the memory bus running at 100 MHz. By running the same

measurements in parallel on both CPUs of a Dual-Pentium system, one �nds

that the total memory access rate of the two processors almost saturates the

theoretical bandwidth (which may be distributed in a slightly asymmetric way

among them).

As a basic benchmark for QCD-like applications, we used a carefully op-

timized C-code for the kernel of the Wilson-Dirac operator with SU(3) gauge

�elds on a L4 lattice. The sustained performance as a function of L is shown

in �g. 12. As expected from the above benchmarks for pure memory access,

the performance is almost doubled when running an independent program on

each of the two CPUs of a Dual-Pentium system. The sustained performance

rapidly drops with larger lattice sizes, however it does not show a pronounced

step structure as in �g. 11 because some fraction of the data can always be kept
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in cache. The e�ect of the cache is also evident from the decrease in perfor-

mance when the L2 cache is disabled. Hence, it might be possible to increase the

sustained performance by a more cache-conscious coding (e.g. by sweeping in a

suitable order throught the lattice size). In general, it seems that a sustained

performance of around 30 % should be realistic as a rough estimate for typical

QCD applications based on the Wilson-Dirac operator.

The e�ect of remote communications has not yet been studied.
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Figure 11: Measurement of cache e�ects for pure memory accesses with di�erent

burst lengths on a Pentiun II at 400 MHz. The upper and lower solid curves

are for load and store operations, respectively. The dashed curves show the

analogous measurements with the L2 cache disabled. Dotted lines are the results

for simultaneous test execution on both CPUs.
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Figure 12: Sustained performance for the Wilson-Dirac operator at various

lattice sizes L4 on single and dual processors with L2 cache enabled (solid curves)

and disabled (dashed curves).
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